1000 resultados para MAGNETIC INSULATORS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Bose-Einstein condensation (BEC) has been observed in magnetic insulators in the last decade. The condensed bosons are magnons associated with an ordered magnetic phase induced by a magnetic field. We review the experiments in the spin-gap compound NiCl2-4SC(NH2)(2), in which the formation of BEC occurs by applying a magnetic field at low temperatures. This is a contribution to the celebration of the 50th anniversary of the Solid State and Low Temperature Laboratory of the University of So Paulo, where this compound was first magnetically characterized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By means of nuclear spin-lattice relaxation rate T-1(-1), we follow the spin dynamics as a function of the applied magnetic field in two gapped quasi-one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl2-4SC(NH2)(2) and the spin-ladder system (C5H12N)(2)CuBr4. In both systems, spin excitations are confirmed to evolve from magnons in the gapped state to spinons in the gapless Tomonaga-Luttinger-liquid state. In between, T-1(-1) exhibits a pronounced, continuous variation, which is shown to scale in accordance with quantum criticality. We extract the critical exponent for T-1(-1), compare it to the theory, and show that this behavior is identical in both studied systems, thus demonstrating the universality of quantum-critical behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic insulators have proven to be usable as quantum simulators for itinerant interacting quantum systems. In particular the compound (C5H12N)2CuBr4 (for short: (Hpip)2CuBr4) was shown to be a remarkable realization of a Tomonaga–Luttinger liquid (TLL) and allowed us to quantitatively test the TLL theory. Substitution weakly disorders this class of compounds and thus allows us to use them to tackle questions pertaining to the effect of disorder in TLL as well, such as that of the formation of the Bose glass. In this paper we present, as a first step in this direction, a study of the properties of the related (Hpip)2CuCl4 compound. We determine the exchange couplings and compute the temperature and magnetic field dependence of the specific heat, using a finite temperature density matrix renormalization group procedure. Comparison with the measured specific heat at zero magnetic field confirms the exchange parameters and Hamiltonian for the (Hpip)2CuCl4 compound, giving the basis needed to begin studying the disorder effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider dilute magnetic doping in the surface of a three dimensional topological insulator where a two dimensional Dirac electron gas resides. We find that exchange coupling between magnetic atoms and the Dirac electrons has a strong and peculiar effect on both. First, the exchange-induced single ion magnetic anisotropy is very large and favors off-plane orientation. In the case of a ferromagnetically ordered phase, we find a colossal magnetic anisotropy energy, of the order of the critical temperature. Second, a persistent electronic current circulates around the magnetic atom and, in the case of a ferromagnetic phase, around the edges of the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the structure, magnetic and dielectric properties of the double perovskite oxides, R2NiMnO6 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y). We could refine powder X-ray diffraction patterns of all the phases on the basis of monoclinic (P2(1)/n) double perovskite structure where Ni and Mn atoms are ordered at 2c and 2d sites, respectively. All the phases are ferromagnetic insulators exhibiting relatively low dielectric loss and dielectric constants in the range 15-25. The ferromagnetic ordering temperature of the R2NiMnO6 series seems to correlate better with the radius of R3+ atoms than with the average Ni-O-Mn angle (phi) in the double perovskite structure. These results are consistent with all samples having Mn4+ and Ni2+ With minimal antisite disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new compounds with the formula of CdYMWO7 (M = Cr, Mn) were prepared by solid state reaction. They crystallized with orthorhombic structure with the cell parameters of a = 11.7200 Angstrom, b = 7.1779 Angstrom, c = 6.9805 Angstrom (CdYCrWO7), and a = 11.7960 Angstrom, b = 6.1737 Angstrom, c = 7.6530 Angstrom (CdYMnWO7). These compounds are insulators with high resistivities at room temperature. The temperature dependence of the magnetic susceptibility of CdYMWO7 (M = Cr and Mn) show Curie-Weiss Law's behaviors from 80 to 300 K. The magnetic moments at room temperature fit very well with those corresponding to Cr3+ and Mn3+ ions. This suggests that both Cr and Mn ions exist in + 3 oxidation state in CdYMWO7 compounds. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is an author-created, un-copyedited version of an article accepted for publication in Acta Physica Polonica A. The Version of Record is available online at http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z2p31.pdf

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic interactions in ionic solids are studied using parameter-free methods designed to provide accurate energy differences associated with quantum states defining the Heisenberg constant J. For a series of ionic solids including KNiF3, K2NiF4, KCuF3, K2CuF4, and high- Tc parent compound La2CuO4, the J experimental value is quantitatively reproduced. This result has fundamental implications because J values have been calculated from a finite cluster model whereas experiments refer to infinite solids. The present study permits us to firmly establish that in these wide-gap insulators, J is determined from strongly local electronic interactions involving two magnetic centers only thus providing an ab initio support to commonly used model Hamiltonians.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: 3.0 Tesla MRI offers the potential to quantify the volume fraction and structural texture of cancellous bone, along with quantification of marrow composition, in a single non-invasive examination. This study describes our preliminary investigations to identify parameters which describe cancellous bone structure including the relationships between texture and volume fraction.