863 resultados para MAGNESIUM ALLOYS
Resumo:
Purpose: In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy. The effects of environmental temperature and loading rates on impact and tension behavior of the alloy were also investigated. Design/methodology/approach: The tests were conducted using an Instron universal testing machine. The loading speed was changed from 1 mm/min to 300 mm/min to gain a better understanding of the effect of strain rate. To understand the failure behavior of this alloy at different environmental temperatures, Charpy impact test was conducted in a range of temperatures (-40~35°C). Plane strain fracture toughness (KIC) was evaluated using compact tension (CT) specimen. To gain a better understanding of the failure mechanisms, all fracture surfaces were observed using scanning electron microscopy (SEM). In addition, fatigue behavior of this alloy was estimated using tension test under tension-tension condition at 30 Hz. The stress amplitude was selected in the range of 20~50 MPa to obtain the S-N curve. Findings: The tensile test indicated that the mechanical properties were not sensitive to the strain rates applied (3.3x10-4~0.1) and the plastic deformation was dominated by twining mediated slip. The impact energy is not sensitive to the environmental temperature. The plane strain fracture toughness and fatigue limit were evaluated and the average values were 7.6 MPa.m1/2 and 25 MPa, respectively. Practical implications: Tested materials AM60 Mg alloy can be applied among others in automotive industry aerospace, communication and computer industry. Originality/value: Many investigations have been conducted to develop new Mg alloys with improved stiffness and ductility. On the other hand, relatively less attention has been paid to the failure mechanisms of Mg alloys, such as brittle fracture and fatigue, subjected to different environmental or loading conditions. In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy.
Resumo:
The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.
Resumo:
The humid aging of composite propellants containing a terpolymer of polybutadiene, acrylic acid, and acrylonitrile (PBAN) as a binder has been studied as a function of aging temperature, relative humidity, and aging time. Three composite types - AP-PBAN, AP-Al-PBAN, and AP-(Al-Mg) alloy- PBAN - have been studied. The burning rates of all three propellant types were unaffected by aging. The calorimetric values of composites containing aluminum-magnesium alloy decreased on aging, and the lattice parameter of the alloy decreased to a value close to that of aluminum. Water absorption in all of the samples increased with increases in the temperature, relative humidity, and aging time. The compression strength of the nonmetalized and aluminized samples decreased on aging, whereas that of the composites containing the alloy increased. The latter effect has been traced to reaction of residual carboxyl groups on the polymer chains with magnesium, leading to cross-linking. The reaction between the -COOH groups and magnesium has been proved using infrared spectroscopy. (Author)
Resumo:
In this work, Mode-I fracture experiments are conducted using notched compact tension specimens machined from a rolled AZ31 Mg alloy plate having near-basal texture with load applied along rolling direction (RD) and transverse direction (TD). Moderately high notched fracture toughness of J(C) similar to 46 N/mm is obtained in both RD and TD specimens. Fracture surface shows crack tunneling at specimen mid-thickness and extensive shear lips near the free surface. Dimples are observed from SEM fractographs suggesting ductile fracture. EBSD analysis shows profuse tensile twinning in the ligament ahead of the notch. It is shown that tensile twinning plays a dual role in enhancing the toughness in the notched fracture specimens with reduced triaxiality. It provides significant dissipation in the background plastic zone and imparts hardening to the material surrounding the fracture process zone via operation of several mechanisms which retards micro-void growth and coalescence. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Due to their high specific strength and low density, magnesium and magnesium-based alloys have gained great technological importance in recent years. However, their underlying hexagonal crystal structure furnishes Mg and its alloys with a complex mechanical behavior because of their comparably smaller number of energetically favorable slip systems. Besides the commonly studied slip mechanism, another way to accomplish general deformation is through the additional mechanism of deformation-induced twinning. The main aim of this thesis research is to develop an efficient continuum model to understand and ultimately predict the material response resulting from the interaction between these two mechanisms.
The constitutive model we present is based on variational constitutive updates of plastic slips and twin volume fractions and accounts for the related lattice reorientation mechanisms. The model is applied to single- and polycrystalline pure magnesium. We outline the finite-deformation plasticity model combining basal, pyramidal, and prismatic dislocation activity as well as a convexification based approach for deformation twinning. A comparison with experimental data from single-crystal tension-compression experiments validates the model and serves for parameter identification. The extension to polycrystals via both Taylor-type modeling and finite element simulations shows a characteristic stress-strain response that agrees well with experimental observations for polycrystalline magnesium. The presented continuum model does not aim to represent the full details of individual twin-dislocation interactions, yet it is sufficiently efficient to allow for finite element simulations while qualitatively capturing the underlying microstructural deformation mechanisms.
Resumo:
Dry sliding tests were performed on as-cast magnesium alloys Mg97Zn1Y2 and AZ91 using a pin-on-disc configuration. Coefficients of friction and wear rates were measured within a load range of 20-380 and 20-240 N at a sliding velocity of 0.785 m/s. X-ray differactometer, scanning electron microscopy, tensile testing machine were used to characterize the microstructures and mechanical properties of Mg97Zn1Y2 alloy and AZ91 alloy. Worn surface morphologies of Mg97Zn1Y2 and AZ91 were examined using scanning electron microscopy.
Resumo:
In the present work, the edge-to-edge matching model has been introduced to predict the orientation relationships (OR) between the MgZn2 phase which has hexagonal close packed (HCP) structure and the HCP a-Mg matrix. Based on the crystal structures and lattice parameters only, the model has predicted the two most preferred ORs and they are: (1) [1 1 2 3](alpha-Mg) vertical bar vertical bar]1 1 2 3](alpha-Mg), (0 0 0 1)(alpha-Mg) 0.27 degrees from (0 0 0 1)(MgZn2), (1 0 1 1)(alpha-Mg) 26.18 degrees from (1 1 2 2)(MgZn2), (2) [1 0 1 0](alpha-Mg),vertical bar vertical bar[1 1 2 0](MgZn2), (0 0 0 1)(alpha-Mg) vertical bar vertical bar(0 0 0 1)(MgZn2), (1 0 1 1)(alpha-Mg) 3.28 degrees from ( 1 1 2 2)(MgZn2). Four experimental ORs have been reported in the alpha-Mg/MgZn2 system, and the most frequently reported one is ideally the OR (2). The other three experimental ORs are near versions of the OR (2). The habit plane of the OR (2) has been predicted and it agrees well with the experimental results.
Resumo:
En los últimos años ha habido una fuerte tendencia a disminuir las emisiones de CO2 y su negativo impacto medioambiental. En la industria del transporte, reducir el peso de los vehículos aparece como la mejor opción para alcanzar este objetivo. Las aleaciones de Mg constituyen un material con gran potencial para el ahorro de peso. Durante la última década se han realizado muchos esfuerzos encaminados a entender los mecanismos de deformación que gobiernan la plasticidad de estos materiales y así, las aleaciones de Mg de colada inyectadas a alta presión y forjadas son todavía objeto de intensas campañas de investigación. Es ahora necesario desarrollar modelos que contemplen la complejidad inherente de los procesos de deformación de éstos. Esta tesis doctoral constituye un intento de entender mejor la relación entre la microestructura y el comportamiento mecánico de aleaciones de Mg, y dará como resultado modelos de policristales capaces de predecir propiedades macro- y microscópicas. La deformación plástica de las aleaciones de Mg está gobernada por una combinación de mecanismos de deformación característicos de la estructura cristalina hexagonal, que incluye el deslizamiento cristalográfico en planos basales, prismáticos y piramidales, así como el maclado. Las aleaciones de Mg de forja presentan texturas fuertes y por tanto los mecanismos de deformación activos dependen de la orientación de la carga aplicada. En este trabajo se ha desarrollado un modelo de plasticidad cristalina por elementos finitos con el objetivo de entender el comportamiento macro- y micromecánico de la aleación de Mg laminada AZ31 (Mg-3wt.%Al-1wt.%Zn). Este modelo, que incorpora el maclado y tiene en cuenta el endurecimiento por deformación debido a las interacciones dislocación-dislocación, dislocación-macla y macla-macla, predice exitosamente las actividades de los distintos mecanismos de deformación y la evolución de la textura con la deformación. Además, se ha llevado a cabo un estudio que combina difracción de electrones retrodispersados en tres dimensiones y modelización para investigar el efecto de los límites de grano en la propagación del maclado en el mismo material. Ambos, experimentos y simulaciones, confirman que el ángulo de desorientación tiene una influencia decisiva en la propagación del maclado. Se ha observado que los efectos no-Schmid, esto es, eventos de deformación plástica que no cumplen la ley de Schmid con respecto a la carga aplicada, no tienen lugar en la vecindad de los límites de baja desorientación y se hacen más frecuentes a medida que la desorientación aumenta. Esta investigación también prueba que la morfología de las maclas está altamente influenciada por su factor de Schmid. Es conocido que los procesos de colada suelen dar lugar a la formación de microestructuras con una microporosidad elevada, lo cuál afecta negativamente a sus propiedades mecánicas. La aplicación de presión hidrostática después de la colada puede reducir la porosidad y mejorar las propiedades aunque es poco conocido su efecto en el tamaño y morfología de los poros. En este trabajo se ha utilizado un enfoque mixto experimentalcomputacional, basado en tomografía de rayos X, análisis de imagen y análisis por elementos finitos, para la determinación de la distribución tridimensional (3D) de la porosidad y de la evolución de ésta con la presión hidrostática en la aleación de Mg AZ91 (Mg- 9wt.%Al-1wt.%Zn) colada por inyección a alta presión. La distribución real de los poros en 3D obtenida por tomografía se utilizó como input para las simulaciones por elementos finitos. Los resultados revelan que la aplicación de presión tiene una influencia significativa tanto en el cambio de volumen como en el cambio de forma de los poros que han sido cuantificados con precisión. Se ha observado que la reducción del tamaño de éstos está íntimamente ligada con su volumen inicial. En conclusión, el modelo de plasticidad cristalina propuesto en este trabajo describe con éxito los mecanismos intrínsecos de la deformación de las aleaciones de Mg a escalas meso- y microscópica. Más especificamente, es capaz de capturar las activadades del deslizamiento cristalográfico y maclado, sus interacciones, así como los efectos en la porosidad derivados de los procesos de colada. ---ABSTRACT--- The last few years have seen a growing effort to reduce CO2 emissions and their negative environmental impact. In the transport industry more specifically, vehicle weight reduction appears as the most straightforward option to achieve this objective. To this end, Mg alloys constitute a significant weight saving material alternative. Many efforts have been devoted over the last decade to understand the main mechanisms governing the plasticity of these materials and, despite being already widely used, high pressure die-casting and wrought Mg alloys are still the subject of intense research campaigns. Developing models that can contemplate the complexity inherent to the deformation of Mg alloys is now timely. This PhD thesis constitutes an attempt to better understand the relationship between the microstructure and the mechanical behavior of Mg alloys, as it will result in the design of polycrystalline models that successfully predict macro- and microscopic properties. Plastic deformation of Mg alloys is driven by a combination of deformation mechanisms specific to their hexagonal crystal structure, namely, basal, prismatic and pyramidal dislocation slip as well as twinning. Wrought Mg alloys present strong textures and thus specific deformation mechanisms are preferentially activated depending on the orientation of the applied load. In this work a crystal plasticity finite element model has been developed in order to understand the macro- and micromechanical behavior of a rolled Mg AZ31 alloy (Mg-3wt.%Al-1wt.%Zn). The model includes twinning and accounts for slip-slip, slip-twin and twin-twin hardening interactions. Upon calibration and validation against experiments, the model successfully predicts the activity of the various deformation mechanisms and the evolution of the texture at different deformation stages. Furthermore, a combined three-dimensional electron backscatter diffraction and modeling approach has been adopted to investigate the effect of grain boundaries on twin propagation in the same material. Both experiments and simulations confirm that the misorientation angle has a critical influence on twin propagation. Non-Schmid effects, i.e. plastic deformation events that do not comply with the Schmid law with respect to the applied stress, are absent in the vicinity of low misorientation boundaries and become more abundant as misorientation angle increases. This research also proves that twin morphology is highly influenced by the Schmid factor. Finally, casting processes usually lead to the formation of significant amounts of gas and shrinkage microporosity, which adversely affect the mechanical properties. The application of hydrostatic pressure after casting can reduce the porosity and improve the properties but little is known about the effects on the casting’s pores size and morphology. In this work, an experimental-computational approach based on X-ray computed tomography, image analysis and finite element analysis is utilized for the determination of the 3D porosity distribution and its evolution with hydrostatic pressure in a high pressure diecast Mg AZ91 alloy (Mg-9wt.%Al-1wt.%Zn). The real 3D pore distribution obtained by tomography is used as input for the finite element simulations using an isotropic hardening law. The model is calibrated and validated against experimental stress-strain curves. The results reveal that the pressure treatment has a significant influence both on the volume and shape changes of individuals pores, which have been precisely quantified, and which are found to be related to the initial pore volume. In conclusion, the crystal plasticity model proposed in this work successfully describes the intrinsic deformation mechanisms of Mg alloys both at the mesoscale and the microscale. More specifically, it can capture slip and twin activities, their interactions, as well as the potential porosity effects arising from casting processes.
Resumo:
An inverse optimization strategy based on crystal plasticity finite element simulations of polycrystals was used to obtain the critical resolved shear stresses of two Mg?1%Mn alloys containing neodymium from macroscopic experimental data. It was found that, with respect to pure Mg, the presence of Nd increases the CRSSbasal, CRSStwinning, and the CRSSbasal/CRSStwinning ratio and decreases the CRSSnon-basal/CRSStwinning ratio. Additions of neodymium as high as 1 wt% result in similar CRSSs values for all deformation modes and, thus, in an isotropic yielding behavior.
Resumo:
Mode of access: Internet.
Resumo:
"Materials Laboratory. Contract no. AF 33(616)-3032, Project no. 7351."