987 resultados para MAFIC INTRUSION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The configuration and the timing of assembly and break-up of Columbia are still matter of debate. In order to improve our knowledge about the Mesoproterozoic evolution of Columbia, a paleomagnetic study was carried out on the 1420 Ma Indiavai mafic intrusive rocks that crosscut the polycyclic Proterozoic basement of the SW Amazonian Craton, in southwestern Mato Grosso State (Brazil). Alternating field and thermal demagnetization revealed south/southwest ChRM directions with downward inclinations for sixteen analyzed sites. These directions are probably carried by SD/PSD magnetite with high coercivities and high unblocking temperatures as indicated by additional rock magnetic tests, including thermomagnetic data, hysteresis data and the progressive acquisition of isothermal remanent magnetization. Different stable magnetization components isolated in host rocks from the basement 10 km NW away to the Indiavai intrusion, further support the primary origin of the ChRM. A mean of the site mean directions was calculated at Dm = 209.8 degrees, Im = 50.7 degrees (alpha(95) = 8.0 degrees, K = 22.1), which yielded a paleomagnetic pole located at 249.7 degrees E, 57.0 degrees S (A(95) = 8.6 degrees). The similarity of this pole with the recently published 1420 Ma pole from the Nova Guarita dykes in northern Mato Grosso State suggests a similar tectonic framework for these two sites located 600 km apart, implying the bulk rigidity of the Rondonian-San Ignacio crust at that time. Furthermore these data provide new insights on the tectonic significance of the 1100-1000 Ma Nova Brasilandia belt-a major EW feature that cuts across the basement rocks of this province, which can now be interpreted as intracratonic, in contrast to previous interpretation. From a global perspective, a new Mesoproterozoic paleogeography of Columbia has been proposed based on comparison of these 1420 Ma poles and a 1780 Ma pole from Amazonia with other paleomagnetic poles of similar age from Baltica and Laurentia, a reconstruction in agreement with geological correlations. (C) 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several I- and A-type granite, syenite plutons and spatially associated, giant Fe–Ti–V deposit-bearing mafic ultramafic layered intrusions occur in the Pan–Xi(Panzhihua–Xichang) area within the inner zone of the Emeishan large igneous province (ELIP). These complexes are interpreted to be related to the Emeishan mantle plume. We present LA-ICP-MS and SIMS zircon U–Pb ages and Hf–Nd isotopic compositions for the gabbros, syenites and granites from these complexes. The dating shows that the age of the felsic intrusive magmatism (256.2 ± 3.0–259.8 ± 1.6 Ma) is indistinguishable from that of the mafic intrusive magmatism (255.4 ± 3.1–259.5 ± 2.7 Ma) and represents the final phase of a continuous magmatic episode that lasted no more than 10 Myr. The upper gabbros in the mafic–ultramafic intrusions are generally more isotopically enriched (lower eNd and eHf) than the middle and lower gabbros, suggesting that the upper gabbros have experienced a higher level of crustal contamination than the lower gabbros. The significantly positive eHf(t) values of the A-type granites and syenites (+4.9 to +10.8) are higher than those of the upper gabbros of the associated mafic intrusion, which shows that they cannot be derived by fractional crystallization of these bodies. They are however identical to those of the mafic enclaves (+7.0 to +11.4) and middle and lower gabbros, implying that they are cogenetic. We suggest that they were generated by fractionation of large-volume, plume-related basaltic magmas that ponded deep in the crust. The deep-seated magma chamber erupted in two stages: the first near a density minimum in the basaltic fractionation trend and the second during the final stage of fractionation when the magma was a low density Fe-poor, Si-rich felsic magma. The basaltic magmas emplaced in the shallowlevel magma chambers differentiated to form mafic–ultramafic layered intrusions accompanied by a small amount of crustal assimilation through roof melting. Evolved A-type granites (synenites and syenodiorites) were produced dominantly by crystallization in the deep crustal magma chamber. In contrast, the I-type granites have negative eNd(t) [-6.3 to -7.5] and eHf(t) [-1.3 to -6.7] values, with the Nd model ages (T Nd DM2) of 1.63-1.67 Ga and Hf model ages (T Hf DM2) of 1.56-1.58 Ga, suggesting that they were mainly derived from partial melting of Mesoproterozoic crust. In combination with previous studies, this study also shows that plume activity not only gave rise to reworking of ancient crust, but also significant growth of juvenile crust in the center of the ELIP.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Niquelandia Complex, Brazil, is one of the world's largest mafic-ultramafic plutonic complexes. Like the Mafic Complex of the Ivrea-Verbano Zone, it is affected by a pervasive high-T foliation and shows hypersolidus deformation structures, contains significant inclusions of country-rock paragneiss, and is subdivided into a Lower and an Upper Complex. In this paper, we present new SHRIMP U-Pb zircon ages that provide compelling evidence that the Upper and the Lower Niquelandia Complexes formed during the same igneous event at ca. 790 Ma. Coexistence of syn-magmatic and high-T subsolidus deformation structures indicates that both complexes grew incrementally as large crystal mush bodies which were continuously stretched while fed by pulses of fresh magma. Syn-magmatic recrystallization during this deformation resulted in textures and structures which, although appearing metamorphic, are not ascribable to post-magmatic metamorphic event(s), but are instead characteristic of the growth process in huge and deep mafic intrusions such as both the Niquelandia and Ivrea Complexes. Melting of incorporated country-rock paragneiss continued producing hybrid rocks during the last, vanishing stages of magmatic crystallization. This resulted in the formation of minor, late-stage hybrid rocks, whose presence obscures the record of the main processes of interaction between mantle magmas and crustal components, which may be active at the peak of the igneous events and lead to the generation of eruptible hybrid magmas. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Apiai gabbro-norite is a massive fine-grained Neoproterozoic intrusion emplaced in a core of synformal structure that deforms low-grade marine metasedimentary rocks of the Ribeira Belt of south-eastern Brazil. The lack of visible magmatic layering or any internal fabric has been a major limitation in deciding whether the emplacement occurred before or after the regional folding. To assist in the tectonic interpretations, we combine low-field anisotropy of magnetic susceptibility (AMS) and silicate shape preferred orientation (SPO) to reveal the internal structure of the mafic intrusion. Magnetic data indicate a mean susceptibility of about 10(-2) SI and a mean anisotropy degree (P) of about 1.08, essentially yielded by titanomagnetite. The magnetic and silicate foliations for P >= 1.10 are parallel to each other, while the lineations tend to scatter on the foliation plane, in agreement with the dominant oblate symmetry of the AMS and SPO ellipsoids. For lower P values, the magnetic and silicate fabrics vary from coaxial to oblique, and for P <= 1.05, their shapes and orientations can be quite distinct. The crystal size distribution (CSD) of plagioclase for P > 1.05 is log linear, in agreement with a bulk simple crystallisation history. These results combined show that for a strong SPO, corresponding to a magnetic anisotropy above 1.10, AMS is a reliable indicator of the magmatic fabric. They indicate that the Apiai gabbro-norite consists of sill-like body that was inclined gently to the north by the regional folding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents sulfide mineral occurrence, abundance, and composition in samples from hydrothermally altered peridotite and gabbro recovered during Ocean Drilling Program (ODP) Leg 209 from south of the 15°20'N Fracture Zone on the Mid-Atlantic Ridge at Site 1268. Most of the sulfide minerals occur in veins and halos around veins in serpentinized peridotite. The only sulfide phases reported that occur in proximity to gabbro are those associated with a mafic intrusion into serpentinized peridotite. Sulfide mineral species change predictably downsection but are perturbed coincident with a breccia interpreted to be generated by intrusion of a gabbroic magma. The general downhole trend suggests sulfide mineral precipitation in conditions with decreasing sulfur and oxygen fugacity. Sulfide minerals that indicate precipitation at relatively higher sulfur and oxygen fugacity occur in the central core of the intrusion breccia. Sphalerite makes a fleeting appearance in the sulfide mineral assemblage in samples from the lower part of the intrusion breccia. Strongly contrasting pyrite compositions suggest at least two episodes of pyrite precipitation, but there is no clear morphological distinction between phases. Heazelwoodite, tentatively identified in shipboard examinations, could not be confirmed in this study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Mont Collon mafic complex is one of the best preserved examples of the Early Permian magmatism in the Central Alps, related to the intra-continental collapse of the Variscan belt. It mostly consists (> 95 vol.%) of ol+hy-nonnative plagioclase-wehrlites, olivine- and cpx-gabbros with cumulitic structures, crosscut by acid dikes. Pegmatitic gabbros, troctolites and anorthosites outcrop locally. A well-preserved cumulative, sequence is exposed in the Dents de Bertol area (center of intrusion). PT-calculations indicate that this layered magma chamber emplaced at mid-crustal levels at about 0.5 GPa and 1100 degrees C. The Mont Collon cumulitic rocks record little magmatic differentiation, as illustrated by the restricted range of clinopyroxene mg-number (Mg#(cpx)=83-89). Whole-rock incompatible trace-element contents (e.g. Nb, Zr, Ba) vary largely and without correlation with major-element composition. These features are characteristic of an in-situ crystallization process with variable amounts of interstitial liquid L trapped between the cumulus mineral phases. LA-ICPMS measurements show that trace-element distribution in the latter is homogeneous, pointing to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling based on Langmuir's in-situ crystallization equation successfully duplicated the REE concentrations in cumulitic minerals of all rock facies of the intrusion. The calculated amounts of interstitial liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 20%, relative to the least evolved facies of the intrusion. L values are well correlated with the modal proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations (e.g. Zr, Nb) of the tested samples. However, the in-situ crystallization model reaches its limitations with rock containing high modal content of REE-bearing minerals (i.e. zircon), such as pegmatitic gabbros. Dikes of anorthositic composition, locally crosscutting the layered lithologies, evidence that the Mont Collon rocks evolved in open system with mixing of intercumulus liquids of different origins and possibly contrasting compositions. The proposed model is not able to resolve these complex open systems, but migrating liquids could be partly responsible for the observed dispersion of points in some correlation diagrams. Absence of significant differentiation with recurrent lithologies in the cumulitic pile of Dents de Bertol points to an efficiently convective magma chamber, with possible periodic replenishment, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The southwestern margin of the Eastern Ghats Belt characteristically exposes mafic dykes intruding massif-type charnockites. Dykes of olivine basalt of alkaline composition have characteristic trace element signatures comparable with Ocean Island Basalt (OIB). Most importantly strong positive Nb anomaly and low values of Zr/Nb ratio are consistent with OIB source of the mafic dykes. K-Ar isotopic data indicate two cooling ages at 740 and 530 Ma. The Pan-African thermal event could be related to reactivation of major shear zones and represented by leuco-granite vein along minor shear bands. And 740 Ma cooling age may indicate the low grade metamorphic imprints, noted in some of the dykes. Although no intrusion age could be determined from the present dataset, it could be constrained by some age data of the host charnockite gneiss and Alkaline rocks of the adjacent Prakasam Province. Assuming an intrusion age of similar to 1.3 Ga, Sr-Nd isotopic composition of the dykes indicate that they preserved time-integrated LREE enrichment. In view of the chemical signatures of OIB source, the mafic dykes could as well be related to continental rifting, around 1.3 Ga, which may have been initiated by intra-plate volcanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PhD thesis at hand consists of three parts and describes the petrogenetic evolution of Uralian-Alaskan-type mafic ultramafic complexes in the Ural Mountains, Russia. Uralian-Alaskan-type mafic-ultramafic complexes are recognized as a distinct class of intrusions. Characteristic petrologic features are the concentric zonation of a central dunite body grading outward into wehrlite, clinopyroxenite and gabbro, the absence of orthopyroxene and frequently occurring platinum group element (PGE) mineralization. In addition, the presence of ferric iron-rich spinel discriminates Uralian-Alaskan-type complexes from most other mafic ultramafic rock assemblages. The studied Uralian-Alaskan-type complexes (Nizhnii Tagil, Kytlym and Svetley Bor) belong to the southern part of a 900 km long, N–S-trending chain of similar intrusions between the Main Uralian Fault to the west and the Serov-Mauk Fault to the east. The first chapter of this thesis studies the evolution of the ultramafic rocks tracing the compositional variations of rock forming and accessory minerals. The comparison of the chemical composition of olivine, clinopyroxene and chromian spinel from the Urals with data from other localities indicates that they are unique intrusions having a characteristic spinel and clinopyroxene chemistry. Laser ablation-ICPMS (LA-ICPMS ) analyses of trace element concentrations in clinopyroxene are used to calculate the composition of their parental melt which is characterized by enriched LREE (0.5-5.2 prim. mantle) and other highly incompatible elements (U, Th, Ba, Rb) relative to the HREE (0.25-2.0 prim. mantle). A subduction-related geotectonic setting is indicated by a positive anomaly for Sr and negative anomalies for Ti, Zr and Hf. The mineral compositions monitor the evolution of the parental magmas and decipher differences between the studied complexes. In addition, the observed variation in LREE/HREE (for example La/Lu = 2-24) can be best explained with the model of an episodically replenished and erupted open magma chamber system with the extensive fractionation of olivine, spinel and clinopyroxene. The data also show that ankaramites in a subduction-related geotectonic setting could represent parental magmas of Uralian-Alaskan-type complexes. The second chapter of the thesis discusses the chemical variation of major and trace elements in rock-forming minerals of the mafic rocks. Electron microprobe and LA-ICPMS analyses are used to quantitatively describe the petrogenetic relationship between the different gabbroic lithologies and their genetic link to the ultramafic rocks. The composition of clinopyroxene identifies the presence of melts with different trace element abundances on the scale of a thin section and suggests the presence of open system crustal magma chambers. Even on a regional scale the large variation of trace element concentrations and ratios in clinopyroxene (e.g. La/Lu = 3-55) is best explained by the interaction of at least two fundamentally different magma types at various stages of fractionation. This requires the existence of a complex magma chamber system fed with multiple pulses of magmas from at least two different coeval sources in a subduction-related environment. One source produces silica saturated Island arc tholeiitic melts. The second source produces silica undersaturated, ultra-calcic, alkaline melts. Taken these data collectively, the mixing of the two different parental magmas is the dominant petrogenetic process explaining the observed chemical variations. The results further imply that this is an intrinsic feature of Uralian-Alaskan-type complexes and probably of many similar mafic-ultramafic complexes world-wide. In the third chapter of this thesis the major element composition of homogeneous and exsolved spinel is used as a petrogenetic indicator. Homogeneous chromian spinel in dunites and wehrlites monitors the fractionation during the early stages of the magma chamber and the onset of clinopyroxene fractionation as well as the reaction of spinel with interstitial liquid. Exsolved spinel is present in mafic and ultramafic rocks from all three studied complexes. Its composition lies along a solvus curve which defines an equilibrium temperature of 600°C, given that spinel coexists with olivine. This temperature is considered to be close to the temperature of the host rocks into which the studied Uralian-Alaskan-type complexes intruded. The similarity of the exsolution temperatures in the different complexes over a distance of several hundred kilometres implies a regional tectonic event that terminated the exsolution process. This event is potentially associated with the final exhumation of the Uralian-Alaskan-type complexes along the Main Uralian Fault and the Serov-Mauk Fault in the Uralian fold belt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The late Carboniferous to Permian is a critical period for final amalgamation of the Central Asian Orogenic Belt (CAOB), which is characterized by voluminous igneous rocks, particularly granitoids. The Kekesai composite granitoid porphyry intrusion, situated in the Chinese western Tianshan (southwest part of CAOB) includes two intrusive phases, a monzogranite phase, intruded by a granodiorite phase. LA-ICPMS U-Pb zircon analyses suggest that the monzogranitic rocks formed at 305.5±1.1 Ma, with a wide age range of inherited zircons (358-488 Ma and 1208-1391 Ma), whereas the granodioritic rocks formed at 288.7±1.5 Ma. The monzogranitic and granodioritic phases have similar geochemical features and Sr-Nd-Hf isotopic compositions. They exhibit high and variable SiO2 (66-71 wt.%) and MgO (0.41-2.14 wt.%) contents with some arc-like geochemical characteristics (e.g., enrichment of large ion lithophile elements and negative anomalies of Nb, Ta and Ti) and relatively high initial 87Sr/86Sr ratios (ISr=0.7055-0.7059), low positive eNd(t) (+0.84 to +1.03) as well as a large variation in Hf isotopic compositions with eHf(t) between +3.43 to +14.8, implying both of them were derived from similar source materials. These geochemical characteristics suggest that they might be mainly derived from the partial melting of arc-derived Mesoproterozoic mafic lower crust with involvement of a mantle-derived component in variable proportions by mantle-derived magma underplating. The presence of late-Ordovician to earliest early Carboniferous inherited zircons and the Hf isotopic compositions in the monzogranitic sample, similar to that of the widespread juvenile arc rocks, indicates some crust contamination during magma emplacement. Our new data, combined with previous studies, imply that extensive post-collisional magmatism due to underplating of mantle-derived magma, could plausibly be explained by slab break-off regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. We tested predictions from the elaborated intrusion (EI) theory of desire, which distinguishes intrusive thoughts and elaborations, and emphasizes the importance of imagery. Secondarily, we undertook preliminary evaluations of the Alcohol Craving Experience (ACE) questionnaire, a new measure based on EI Theory. Methods. Participants (N ¼ 232) were in correspondence-based treatment trials for alcohol abuse or dependence. The study used retrospective reports obtained early in treatment using the ACE, and daily self-monitoring of urges, craving, mood and alcohol consumption. Results. The ACE displayed high internal consistency and test – retest reliability and sound relationships with self-monitored craving, and was related to Baseline alcohol dependence, but not to consumption. Imagery during craving was experienced by 81%,with 2.3 senses involved on average. More frequent imagery was associated with longer episode durations and stronger craving. Transient intrusive thoughts were reported by 87% of respondents, and were more common if they frequently attempted to stop alcohol cognitions. Associations between average daily craving and weekly consumption were seen. Depression and negative mood were associated with more frequent, stronger and longer lasting desires for alcohol. Conclusions. Results supported the distinction of automatic and controlled processes in craving, together with the importance of craving imagery. They were also consistent with prediction of consumption from cross-situational averages of craving, and with positive associations between craving and negative mood. However, this study’s retrospective reporting and correlational design require that its results be interpreted cautiously. Research using ecological momentary measures and laboratory manipulations is needed before confident inferences about causality can be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors argue that human desire involves conscious cognition that has strong affective connotation and is potentially involved in the determination of appetitive behavior rather than being epiphenomenal to it. Intrusive thoughts about appetitive targets are triggered automatically by external or physiological cues and by cognitive associates. When intrusions elicit significant pleasure or relief, cognitive elaboration usually ensues. Elaboration competes with concurrent cognitive tasks through retrieval of target related information and its retention in working memory. Sensory images are especially important products of intrusion and elaboration because they simulate the sensory and emotional qualities of target acquisition. Desire images are momentarily rewarding but amplify awareness of somatic and emotional deficits. Effects of desires on behavior are moderated by competing incentives, target availability, and skills. The theory provides a coherent account of existing data and suggests new directions for research and treatment.