992 resultados para MADS-BOX GENE
Resumo:
Changes in genes encoding transcriptional regulators can alter development and are important components of the molecular mechanisms of morphological evolution. MADS-box genes encode transcriptional regulators of diverse and important biological functions. In plants, MADS-box genes regulate flower, fruit, leaf, and root development. Recent sequencing efforts in Arabidopsis have allowed a nearly complete sampling of the MADS-box gene family from a single plant, something that was lacking in previous phylogenetic studies. To test the long-suspected parallel between the evolution of the MADS-box gene family and the evolution of plant form, a polarized gene phylogeny is necessary. Here we suggest that a gene duplication ancestral to the divergence of plants and animals gave rise to two main lineages of MADS-box genes: TypeI and TypeII. We locate the root of the eukaryotic MADS-box gene family between these two lineages. A novel monophyletic group of plant MADS domains (AGL34 like) seems to be more closely related to previously identified animal SRF-like MADS domains to form TypeI lineage. Most other plant sequences form a clear monophyletic group with animal MEF2-like domains to form TypeII lineage. Only plant TypeII members have a K domain that is downstream of the MADS domain in most plant members previously identified. This suggests that the K domain evolved after the duplication that gave rise to the two lineages. Finally, a group of intermediate plant sequences could be the result of recombination events. These analyses may guide the search for MADS-box sequences in basal eukaryotes and the phylogenetic placement of new genes from other plant species.
Resumo:
In response to infection by Rhizobium, highly differentiated organs called nodules form on legume roots. Within these organs, the symbiotic association between the host plant and bacteria is established. A putative plant transcription factor, NMH7, has been identified in alfalfa root nodules. nmh7 contains a MADS-box DNA-binding region and shows homology to flower homeotic genes. This gene is a member of a multigene family in alfalfa and was identified on the basis of nucleic acid homology to plant regulatory protein genes (MADS-box-containing genes) from Antirrhinum and Arabidopsis. RNA analysis and in situ hybridization showed that expression of this class of regulatory genes is limited to the infected cells of alfalfa root nodules and is likely to be involved in the signal transduction pathway initiated by the bacterial symbiont, Rhizobium meliloti. The expression of nmh7 in a root-derived organ is unusual for this class of regulatory genes.
Resumo:
MADS-box genes similar to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been implicated in the regulation of flowering in annual species and bud dormancy in perennial species. Kiwifruit (Actinidia spp.) are woody perennial vines where bud dormancy and out-growth affect flower development. To determine the role of SVP-like genes in dormancy and flowering of kiwifruit, four MADS-box genes with homology to Arabidopsis SVP, designated SVP1, SVP2, SVP3, and SVP4, have been identified and analysed in kiwifruit and functionally characterized in Arabidopsis. Phylogenetic analysis indicate that these genes fall into different sub-clades within the SVP-like gene group, suggesting distinct functions. Expression was generally confined to vegetative tissues, and increased transcript accumulation in shoot buds over the winter period suggests a role for these genes in bud dormancy. Down-regulation before flower differentiation indicate possible roles as floral repressors. Over-expression and complementation studies in Arabidopsis resulted in a range of floral reversion phenotypes arising from interactions with Arabidopsis MADS-box proteins, but only SVP1 and SVP3 were able to complement the svp mutant. These results suggest that the kiwifruit SVP-like genes may have distinct roles during bud dormancy and flowering.
Resumo:
本论文主要涉及两部分内容:第一部分是水稻和太行花中MADS-box基因的相关研究,第二部分是水稻中SAGE技术的生物信息学分析。 MADS-box基因家族在花发育过程中起着重要的作用。水稻是单子叶植物的模式植物,其基因组序列的公布为在基因组水平上鉴定MADS-box基因提供了条件。根据已发表的水稻MADS-box基因序列,利用关键词搜索、HMMER分析、同源比较、系统进化树分析等手段,对GeneBank和TIGR水稻基因组注释中所有已知和未知的水稻MADS-box基因进行了分析。结果表明,水稻中有64个MADS-box基因编码不同氨基酸,其中已知cDNA序列的为43个。在64个基因中,有23个属于ABCDE类基因,并且其cDNA序列已知,其中的10个已有功能方面的研究。通过3’-RACE和筛选水稻花器官的cDNA文库,得到了一个A类基因片断(A5B2),两个E类基因片断(MW1,MW2)。这三个基因分别与OsMADS14,OsMADS7和OsMADS5相似或相同。禾本科植物花器官的起源,尤其是内外稃的起源仍存在疑问,A功能基因是否以及如何参与其形成成为问题的关键。初步原位杂交分析表明,OsMADS14在花发育的早期开始表达。在小穗原基发育过程中,OsMADS14在内外稃原基中有较强的表达。随着小穗的发育,OsMADS14在整个花序中都有表达。在小穗发育的后期,OsMADS14在胚珠中有较强的表达。OsMADS14的表达模式与FUL类基因一致,并且证明了其在花发育的后期仍然表达强烈,暗示其可能与胚珠发育有重要关系。 SEPALLATA基因被认为是花的特异因子,参与了花的四轮花器官的决定过程。在本文中,通过3’-,5’-RACE,从太行花花芽中克隆了一个MADS-box基因。该基因推导的的氨基酸序列含有典型的M,I,K和C四个结构域,与FBP2和SEP3的相似性较高,系统进化树分析表明该基因属于SEP3亚家族,于是将其命名为TrSEP3。TrSEP3首先在花分生组织中表达,然后在雌雄蕊原基及花瓣中表达;在成熟花中,TrSEP3仅在花瓣和雌蕊中表达。这种表达模式与其它的SEP-like基因有稍不同。TrSEP3拟南芥中过量表达后并未导致表型的改变,暗示其功能与拟南芥的SEP基因可能存在差异。选择压力分析显示TrSEP3受到了不显著的负选择压力。这些结果暗示TrSEP3的功能可能与其它的SEP-like基因有差别,值得进一步研究。 SAGE(Serial Analysis of Gene Expression)是对比样品间转录谱的差异、发现新基因的有效的方法。tag mapping是将SAGE-tag与其转录本匹配的过程,其效率直接影响对转录谱的解释,该过程受多种因素影响。目前,对水稻tag mapping过程缺少详细研究,导致其效率不高。为了确定参考数据库和其它合适的条件,我们利用EST序列和基因组序列构建了不同的参考图谱,从全长cDNA数据库中提取虚拟的SAGE-tag,研究了参考图谱、锚定酶、tag长度以及匹配方法对tag mapping效率的影响,并比较了tag mapping的准确率。结果表明,用EST序列构建的参考图谱能够匹配大多数的SAGE-tag,并具有较高的准确率;利用迭代的方法,可以充分利用基因组序列。各种锚定酶之间的差别不明显,其中NlaIII, HpyCH4V 和 AluI 表现较好;17bp的tag比较适合水稻;而用双锚定酶和17bp的tag则可以显著提高tag mapping的效率和准确率。
Resumo:
第一部分 水稻E类MADS-box 基因在花发育中的功能分析 MADS-box 基因是一个大的转录因子家族,在花发育过程中起重要作用。根据对双子叶模式植物拟南芥、金鱼草和矮牵牛遗传突变体的研究,提出了花发育的ABCDE模型。该模型认为:A、B、C、D、E代表了5类功能不同的花器官特征基因,单独或联合控制花器官的发育。A类基因控制萼片的发育;A、B和E类基因控制花瓣的发育;B、C和E类基因控制雄蕊的发育;C和E类基因控制心皮的发育;D类基因控制胚珠的发育;A和C类基因相互抑制。在这5类基因中,E类基因的功能较为复杂,它不仅是花器官特征基因,而且具有花分生组织决定性(Floral meristem determinency)。在单子叶植物中,E类基因的功能发生了很大的分化。水稻是单子叶植物的模式植物,水稻中至少有5个E类基因,分别是OsMADS1、OsMADS5、OsMADS7、OsMADS8和OsMADS34,在这5个E类基因中,除了对OsMADS1基因有较深入的研究外,对其它几个E类基因的功能了解甚少。我们在现有的研究基础上,根据对双子叶植物中E类基因的研究结果,以OsMADS8基因为出发点,利用组织原位杂交,RNAi技术对水稻中的E类基因进行了深入的研究。结果表明:OsMADS8/7基因早在花序枝梗分生组织原基就有转录,随着小穗的生长发育,逐渐集中在小穗分生组织原基,小花分生组织原基,浆片、雄蕊和心皮中表达;在胚珠形成时,内外珠被有很强的杂交信号,而且在幼胚和胚乳中也有表达。OsMADS5在幼花时期,四轮花器官均有表达,在小穗发育后期及受精后的表达方式与OsMADS8/7基因相同。OsMADS8基因被抑制后,转基因植株没有任何表型变化,说明很可能有其它E类基因弥补了OsMADS8基因的功能缺失;当同时抑制其它E类基因的表达时,转基因植株抽穗期明显延长,四轮花器官的发育均受到影响:稃片类似叶片状;浆片转变为稃片类的结构;雄蕊没有花粉;心皮具有了稃片的特点;没有胚珠结构的形成,同时失去了花分生组织决定性,在心皮的部位产生了新的花器官或花分生组织逆转为花序分生组织。说明水稻四轮花器官及胚珠的正常发育需要E类基因的参与,但其功能与双子叶植物如拟南芥,西红柿、矮牵牛等直系同源基因相比已经发生变化;水稻中的E类基因在维持花分生组织特征性方面起重要作用;另外对抽穗期有影响。 第二部分 玉米MADS-box基因ZAG2转录调控区的研究 基因的时空表达受基因中的顺式作用元件及其反式作用因子调控。顺式作用元件由位于基因编码区上游的启动子区域和位置不确定的增强子区域组成。顺式作用元件对基因表达的开启至关重要。MADS-box 基因编码一类控制花器官发育的转录因子,在花的发育过程中顺序表达。MADS-box 基因突变,花器官发生同源异型转换。研究MADS-box 基因的调控序列可以进一步揭示影响基因时空表达的内外因素。ZAG2是玉米MADS-box 基因中的D类基因,控制胚珠的发育,在胚珠和心皮的内表面特异表达。ZAG2基因有7个外显子和6个内含子。我们从玉米基因组分离到了ZAG2基因翻译起始点上游3040bp的序列,并利用5’-RACE方法鉴定出了转录起始点的位置。序列比较发现,在 5’-UTR内有一个1299bp的内含子,这个内含子可能对基因的表达有调控作用,因此构建了两个与GUS基因融合的表达载体:一个是pZAG2-1::GUS,包括翻译起始点以上所有的调控序列;另一个是pZAG2-2::GUS,去掉了5’-UTR中的内含子序列,转化水稻。结果这两个构建都没有使GUS基因在正确的位置表达。pZAG2-1::GUS构建在心皮基部类似花托的部位及稃片顶端着色,pZAG2-2::GUS构建在内外稃片沿稃脉的部位有很强的着色,说明翻译起始点上游的调控序列不足以使基因正常表达。两个构建着色方式不同,可能pZAG2-1::GUS构建在5’-UTR部分含有抑制ZAG2基因在稃片表达的顺式元件,或者启用了在5’-UTR中的转录起始点,因为在5’-UTR的内含子中也有一个很典型的TATA-box。我们推测,在ZAG2基因编码区的第一内含子可能存在另外一些使基因正常表达的增强元件,需要进一步的序列缺失实验加以验证。
Resumo:
The myocyte enhancer factor (MEF)-2 family of transcription factors has been implicated in the regulation of muscle transcription in vertebrates, but the precise position of these regulators within the genetic hierarchy leading to myogenesis is unclear. The MEF2 proteins bind to a conserved A/T-rich DNA sequence present in numerous muscle-specific genes, and they are expressed in the cells of the developing somites and in the embryonic heart at the onset of muscle formation in mammals. The MEF2 genes belong to the MADS box family of transcription factors, which control specific programs of gene expression in species ranging from yeast to humans. Each MEF2 family member contains two highly conserved protein motifs, the MADS domain and the MEF2-specific domain, which together provide the MEF2 factors with their unique DNA binding and dimerization properties. In an effort to further define the function of the MEF2 proteins, and to evaluate the degree of conservation shared among these factors and the phylogenetic pathways that they regulate, we sought to identify MEF2 family members in other species. In Drosophila, a homolog of the vertebrate MEF2 genes was identified and termed D-mef2. The D-MEF2 protein binds to the consensus MEF2 element and can activate transcription through tandem copies of that site. During Drosophila embryogenesis, D-MEF2 is specific to the mesoderm germ layer of the developing embryo and becomes expressed in all muscle cell types within the embryo. The role of D-mef2 in Drosophila embryogenesis was examined by generating a loss-of-function mutation in the D-mef2 gene. In embryos homozygous for this mutant allele, somatic, cardiac, and visceral muscles fail to differentiate, but precursors of these myogenic lineages are normally specified and positioned. These results demonstrate that different muscle cell types share a common myogenic differentiation program controlled by MEF2 and suggest that this program has been conserved from Drosophila to mammals. ^
Resumo:
Three MADS-box genes were identified from a cDNA library derived from young flowers of Eucalyptus grandis W. Hill ex Maiden. The three egm genes are single-copy genes and are expressed almost exclusively in flowers. The egm1 and egm3 genes shared strongest homology with other plant MADS-box genes, which mediate between the floral meristem and the organ-identity genes. The egm3 gene was also expressed strongly in the receptacle or floral tube, which surrounds the carpels in the eucalypt flower and bears the sepals, petals, and numerous stamens. There appeared to be a group of genes in eucalypts with strong homology with the 3′ region of the egm1 gene. The egm2 gene was expressed in eucalypt petals and stamens and was most homologous to MADS-box genes, which belong to the globosa group of genes, which regulate organogenesis of the second and third floral whorls. The possible role of these three genes in eucalypt floral development is discussed.
Family of MADS-Box Genes Expressed Early in Male and Female Reproductive Structures of Monterey Pine
Resumo:
Three MADS-box genes isolated from Monterey pine (Pinus radiata), PrMADS1, PrMADS2, and PrMADS3, are orthologs to members of the AGL2 and AGL6 gene subfamilies in Arabidopsis. These genes were expressed during early stages of pine shoot development in differentiating seed- and pollen-cone buds. Their transcripts were found within a group of cells that formed ovuliferous scale and microsporophyll primordia. Expression of PrMADS3 was also detected in a group of cells giving rise to needle primordia within differentiated vegetative buds, and in needle primordia.
Resumo:
Members of the MyoD family of muscle-specific basic helix-loop-helix (bHLH) proteins function within a genetic pathway to control skeletal muscle development. Mutational analyses of these factors suggested that their DNA binding domains mediated interaction with a coregulator required for activation of muscle-specific transcription. Members of the myocyte enhancer binding factor 2 (MEF2) family of MADS-box proteins are expressed at high levels in muscle and neural cells and at lower levels in several other cell types. MEF2 factors are unable to activate muscle gene expression alone, but they potentiate the transcriptional activity of myogenic bHLH proteins. This potentiation appears to be mediated by direct interactions between the DNA binding domains of these different types of transcription factors. Biochemical and genetic evidence suggests that MEF2 factors are the coregulators for myogenic bHLH proteins. The presence of MEF2 and cell-specific bHLH proteins in other cell types raises the possibility that these proteins may also cooperate to regulate other programs of cell-specific gene expression. We present a model to account for such cooperative interactions.