968 resultados para MACROPHAGE ACTIVATION PHENOTYPE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results: Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-gamma, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-gamma and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production. Conclusions: The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. Methods MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-? and tumor necrosis factor-a) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-? and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia. Results LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-?-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. Conclusion The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Mesenchymal stem cells (MSC) derived from bone marrow can potentially reduce the acute inflammatory response in spinal cord injury (SCI) and thus promote functional recovery. However, the precise mechanisms through which transplanted MSC attenuate inflammation after SCI are still unclear. The present study was designed to investigate the effects of MSC transplantation with a special focus on their effect on macrophage activation after SCI. Rats were subjected to T9-T10 SCI by contusion, then treated 3 days later with transplantation of 1.0×10(6) PKH26-labeled MSC into the contusion epicenter. The transplanted MSC migrated within the injured spinal cord without differentiating into glial or neuronal elements. MSC transplantation was associated with marked changes in the SCI environment, with significant increases in IL-4 and IL-13 levels, and reductions in TNF-a and IL-6 levels. This was associated simultaneously with increased numbers of alternatively activated macrophages (M2 phenotype: arginase-1- or CD206-positive), and decreased numbers of classically activated macrophages (M1 phenotype: iNOS- or CD16/32-positive). These changes were associated with functional locomotion recovery in the MSC-transplanted group, which correlated with preserved axons, less scar tissue formation, and increased myelin sparing. Our results suggested that acute transplantation of MSC after SCI modified the inflammatory environment by shifting the macrophage phenotype from M1 to M2, and that this may reduce the effects of the inhibitory scar tissue in the subacute/chronic phase after injury to provide a permissive environment for axonal extension and functional recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Heart failure with preserved ejection fraction (HFPEF) is a major health problem associated with myocardial leukocyte infiltration, inflammation, and fibrosis. Monocyte and macrophage subsets play a role in HFPEF but have not been studied. We analyzed peripheral blood monocyte phenotype and plasma markers of monocyte activation in patients with HFPEF, asymptomatic LV diastolic dysfunction (aLVDD), and asymptomatic hypertension (aHTN).

METHODS AND RESULTS: Peripheral blood was collected from 23 aHTN, 30 aLVDD, and 30 HFPEF patients. Peripheral cytokines of classic/pro-inflammatory (tumor necrosis factor alpha, interleukin (IL) 12, IL-6, monocyte chemoattractant protein 1, C-X-C motif chemokine 10) and alternative/anti-inflammatory monocytes (chemokine-C-C motif ligand (CCL) 17, CCL-18, soluble CD163) were increased in aLVDD and HFPEF. Peripheral blood mononuclear cells and monocytes were purified and surface-stained for CD14, CD16, CD163, and CD206. Peripheral monocyte percentage was increased in aLVDD and HFPEF and correlated with echocardiographic LVDD indices. Classic/pro-inflammatory monocyte numbers were increased in aLVDD and HFPEF, and alternative/anti-inflammatory monocyte numbers were increased in HFPEF. CD163 M2-macrophage receptor was reduced in HFPEF. Culture of healthy donor monocytes (n = 3) with HFPEF patient-derived sera (n = 6) promoted M2 macrophage features as evidenced by altered morphology and genes (CD206, IL-10).

CONCLUSIONS: Increased peripheral inflammation, monocytosis, and monocyte differentiation to anti-inflammatory/profibrotic M2 macrophages likely associate with HFPEF and its precedent asymptomatic LVDD phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To describe the clinical and laboratory features of macrophage activation syndrome as a complication of juvenile systemic lupus erythematosus (SLE).Methods. Cases of juvenile SLE-associated macrophage activation syndrome were provided by investigators belonging to 3 pediatric rheumatology networks or were found in the literature. Patients who had evidence of macrophage hemophagocytosis on bone marrow aspiration were considered to have definite macrophage activation syndrome, and those who did not have such evidence were considered to have probable macrophage activation syndrome. Clinical and laboratory findings in patients with macrophage activation syndrome were contrasted with those of 2 control groups composed of patients with active juvenile SLE without macrophage activation syndrome. The ability of each feature to discriminate macrophage activation syndrome from active disease was evaluated by calculating sensitivity, specificity, and area under the receiver operating characteristic curve.Results. The study included 38 patients (20 with definite macrophage activation syndrome and 18 with probable macrophage activation syndrome). Patients with definite and probable macrophage activation syndrome were comparable with regard to all clinical and laboratory features of the syndrome, except for a greater frequency of lymphadenopathy, leukopenia, and thrombocytopenia in patients with definite macrophage activation syndrome. Overall, clinical features had better specificity than sensitivity, except for fever, which was highly sensitive but had low specificity. Among laboratory features, the best sensitivity and specificity was achieved using hyperferritinemia, followed by increased levels of lactate dehydrogenase, hypertriglyceridemia, and hypofibrinogenemia. Based on the results of statistical analysis, preliminary diagnostic guidelines for macrophage activation syndrome in juvenile SLE were developed.Conclusion. Our findings indicate that the occurrence of unexplained fever and cytopenia, when associated with hyperferritinemia, in a patient with juvenile SLE should raise the suspicion of macrophage activation syndrome. We propose preliminary guidelines for this syndrome in juvenile SLE to facilitate timely diagnosis and correct classification of patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baccharis dracunculifolia D.C. (Asteraceae), a shrub which grows wild in Brazil, is the main botanical source of Brazilian green propolis. Since Brazilian propolis shows an immunomodulatory activity, the goal of this work was to evaluate the action of B. dracunculifolia extracts and some of its isolated compounds on reactive oxygen intermediate (H2O2) production by macrophages obtained from male BALB/c mice. The results showed that the leaf (Bd-L) (25, 50, and 100 mu g mL(-1)), leaf rinse (Bd-LR) (25 mu g mL(-1)), and the root (Bd-R) (25 mu g mL(-1)) extracts enhanced H2O2 release by macrophages. A phytochemical study of the root and leaves of B. dracunculifolia was carried out. The chromatographic fractionation of Bd-R, using several techniques, afforded the isolation of baccharis oxide (1), friedelanol (2), viscidone (11), 11-hydroxy-10,11-dihydro-euparin (12), and 6-hydroxy-tremetona (13), while Bd-LR gave the following isolated compounds: baccharis oxide (1), friedelanol (2), isosakuranetin (3), aromadendrin-4'-methyl ether (4), dihydrocumaric acid (5), baccharin (6), hautriwaic acid lactone (7), hautriwaic acid acetate (8), drupanin (9), and cumaric acid (10). Among the isolated compounds, baccharis oxide (1) and friedelanol (2) increased H2O2 production at a concentration of 1001,M. This is the first time that the presence of compounds 7, 8, 12, and 13 in B. dracunculifolia has been reported. Based on these results it is suggested that the crude extracts and some isolated compounds from B. dracunculifolia display an immunomodulatory action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrófagos são conhecidos por exercerem uma importante função de mecanismo de defesa quando estas células são estimuladas com produtos naturais e produtos bacterianos (dentre outros). Uma variedade de citocinas e compostos químicos são liberados para induzir sistema de defesa fundamental. Entre outros peróxido de hidrogênio (H2O2) tem sido identificado como moléculas tendo multifunções. Entretanto está bem estabelecido que (H2O2) está envolvido em inúmeros processos fisiológicos, como por exemplo, neurotransmissão, relaxamento da musculatura lisa ou regulação imune. Para a determinação de peróxido de hidrogênio (H2O2) em macrófago peritoneal em camundongos, determinou-se a ação imunomodulatória de extratos (etanólico e etanólico 70%) obtidos de quatro espécies do gênero Paepalanthus (Eriocaulaceae) na concentração de 10 mg/mL. Os estratos etanólicos 70 % de capítulos de P. Hilairei, P. robustus, P. vellozioides e P. speciocus apresentaram maior liberação de (H2O2) do que os outros extratos etanólicos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Th1 cells, in cooperation with activated macrophages, are required to overcome Yersinia enterocolitica infection in mice. The pathway macrophages utilize to metabolize arginine can alter the outcome of inflammation in different ways. The objective of this study was to verify the pattern of macrophages activation in Y. enterocolitica infection of BALB/c (Yersinia-susceptible) and C57BL/6 (Yersinia-resistant) mice. Both strains of mice were infected with Y. enterocolitica O:8 WA 2707. Peritoneal macrophages and spleen cells were obtained on the 1st, 3rd and 5th day post-infection. The iNOS and the arginase activities were assayed in supernatants of macrophage cultures, by measuring their NO/citrulline and ornithine products, respectively. TGFβ-1 production was also assayed. The Th1 and Th2 responses were evaluated in supernatants of lymphocyte cultures, by IFN-γ and IL-4 production. Our results showed that in the early phase of Y. enterocolitica infection (1st and 3rd day), the macrophages from C57BL/6 mice produced higher levels of NO/citrulline and lower levels of ornithine than macrophages from BALB/c mice. The infection with Y. enterocolitica leads to an increase in the TGF-β1 and IL-4 production by BALB/c mice and to an increase in the IFN-γ levels produced by C57BL/6 mice. These results suggest that Y. enterocolitica infection leads to the modulation of M1 macrophages in C57Bl/6 mice, and M2 macrophages in BALB/c mice. The predominant macrophage population (M1 or M2) at the 1st and 3rd day of infection thus seems to be important in determining Y. enterocolitica susceptibility or resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anticipatory cognitive stress appraisal (ACSA) can affect the stress-induced release of stress hormones, which, in turn, can modulate microbicidal potential of macrophages. This study examines whether ACSA modulates wound-induced activation of macrophage microbicidal potential in 22 acutely stressed compared to 17 nonstressed healthy men. After catheter-induced wound infliction and completing the ACSA questionnaire, the stress group underwent an acute mental stress task, while the nonstressed group did not. Macrophage microbicidal potential and stress hormones were repeatedly measured. In acutely stressed men, but not in nonstressed men, higher scores in ACSA related to lower macrophage microbicidal potential. This association was statistically mediated by the norepinephrine (NE) stress response. Our data suggest that ACSA modulates stress-induced suppression of wound-induced macrophage activation and that the NE stress response underlies this effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage activation is a key determinant of susceptibility and pathology in a variety of inflammatory diseases. The extent of macrophage activation is tightly regulated by a number of pro-inflammatory cytokines (e.g. IFN-gamma, IL-2, GM-CSF, IL-3) and anti-inflammatory cytokines (e.g. IL-4, IL-10, TGF-beta). Macrophage colony-stimulating factor (CSF-1/M-CSF) is a key differentiation, growth and survival factor for monocytes/macrophages and osteoclasts. The role of this factor in regulating macrophage activation is often overlooked. This review will summarize our current understanding of the effects of CSF-1 on the activation state of mature macrophages and its role in regulating immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial DNA activates mouse macrophages, B cells, and dendritic cells in a TLR9-dependent manner. Although short ssCpG-containing phosphodiester oligonucleotides (PO-ODN) can mimic the action of bacterial DNA on macrophages, they are much less immunostimulatory than Escherichia coli DNA. In this study we have assessed the structural differences between E. coli DNA and PO-ODN, which may explain the high activity of bacterial DNA on macrophages. DNA length was found to be the most important variable. Double-strandedness was not responsible for the increased activity of long DNA. DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) methylation of E. coli DNA did not enhance macrophage NO production. The presence of two CpG motifs on one molecule only marginally improved activity at low concentration, suggesting that ligand-mediated TLR9 cross-linking was not involved. The major contribution was from DNA length. Synthetic ODN > 44 nt attained the same levels of activity as bacterial DNA. The response of macrophages to CpG DNA requires endocytic uptake. The length dependence of the CpG ODN response was found to correlate with the presence in macrophages of a length-dependent uptake process for DNA. This transport system was absent from B cells and fibroblasts.