14 resultados para MACROEVOLUTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a basis of darwinian evolution that the microevolutionary mechanisms that can be studied in the present are sufficient to account for macroevolution. However, this idea needs to be tested explicitly, as highlighted here by the example of the superceding of dinosaurs and pterosaurs by birds and placental mammals that occurred near the Cretaceous/Tertiary boundary approximately 65 million years ago. A major problem for testing the sufficiency of microevolutionary processes is that independent ideas (such as the existence of an extraterrestrial impact, and the extinction of dinosaurs) were linked without the evidence for each idea being evaluated separately. Here, we suggest and discuss five testable models for the times and divergences of modern mammals and birds. Determination of the model that best represents these events will enable the role of microevolutionary mechanisms to be evaluated. The question of the sufficiency of microevolutionary processes for macroevolution is solvable, and available evidence supports an important role for biological processes in the initial decline of dinosaurs and pterosaurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying the factors that have promoted host shifts by phytophagous insects at a macroevolutionary scale is critical to understanding the associations between plants and insects. We used molecular phylogenies of the beetle genus Blepharida and its host genus Bursera to test whether these insects have been using hosts with widely overlapping ranges over evolutionary time. We also quantified the importance of host range coincidence relative to host chemistry and host phylogenetic relatedness. Overall, the evolution of host use of these insects has not been among hosts that are geographically similar. Host chemistry is the factor that best explains their macroevolutionary patterns of host use. Interestingly, one exceptional polyphagous species has shifted among geographically close chemically dissimilar plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opening phrase of the title is from Charles Darwin’s notebooks (Schweber 1977). It is a double reminder, firstly that mainstream evolutionary theory is not just about describing nature but is particularly looking for mechanisms or ‘causes’, and secondly, that there will usually be several causes affecting any particular outcome. The second part of the title is our concern at the almost universal rejection of the idea that biological mechanisms are sufficient for macroevolutionary changes, thus rejecting a cornerstone of Darwinian evolutionary theory. Our primary aim here is to consider ways of making it easier to develop and to test hypotheses about evolution. Formalizing hypotheses can help generate tests. In an absolute sense, some of the discussion by scientists about evolution is little better than the lack of reasoning used by those advocating intelligent design. Our discussion here is in a Popperian framework where science is defined by that area of study where it is possible, in principle, to find evidence against hypotheses – they are in principle falsifiable. However, with time, the boundaries of science keep expanding. In the past, some aspects of evolution were outside the current boundaries of falsifiable science, but increasingly new techniques and ideas are expanding the boundaries of science and it is appropriate to re-examine some topics. It often appears that over the last few decades there has been an increasingly strong assumption to look first (and only) for a physical cause. This decision is virtually never formally discussed, just an assumption is made that some physical factor ‘drives’ evolution. It is necessary to examine our assumptions much more carefully. What is meant by physical factors ‘driving’ evolution, or what is an ‘explosive radiation’. Our discussion focuses on two of the six mass extinctions, the fifth being events in the Late Cretaceous, and the sixth starting at least 50,000 years ago (and is ongoing). Cretaceous/Tertiary boundary; the rise of birds and mammals. We have had a long-term interest (Cooper and Penny 1997) in designing tests to help evaluate whether the processes of microevolution are sufficient to explain macroevolution. The real challenge is to formulate hypotheses in a testable way. For example the numbers of lineages of birds and mammals that survive from the Cretaceous to the present is one test. Our first estimate was 22 for birds, and current work is tending to increase this value. This still does not consider lineages that survived into the Tertiary, and then went extinct later. Our initial suggestion was probably too narrow in that it lumped four models from Penny and Phillips (2004) into one model. This reduction is too simplistic in that we need to know about survival and ecological and morphological divergences during the Late Cretaceous, and whether Crown groups of avian or mammalian orders may have existed back into the Cretaceous. More recently (Penny and Phillips 2004) we have formalized hypotheses about dinosaurs and pterosaurs, with the prediction that interactions between mammals (and groundfeeding birds) and dinosaurs would be most likely to affect the smallest dinosaurs, and similarly interactions between birds and pterosaurs would particularly affect the smaller pterosaurs. There is now evidence for both classes of interactions, with the smallest dinosaurs and pterosaurs declining first, as predicted. Thus, testable models are now possible. Mass extinction number six: human impacts. On a broad scale, there is a good correlation between time of human arrival, and increased extinctions (Hurles et al. 2003; Martin 2005; Figure 1). However, it is necessary to distinguish different time scales (Penny 2005) and on a finer scale there are still large numbers of possibilities. In Hurles et al. (2003) we mentioned habitat modification (including the use of Geogenes III July 2006 31 fire), introduced plants and animals (including kiore) in addition to direct predation (the ‘overkill’ hypothesis). We need also to consider prey switching that occurs in early human societies, as evidenced by the results of Wragg (1995) on the middens of different ages on Henderson Island in the Pitcairn group. In addition, the presence of human-wary or humanadapted animals will affect the distribution in the subfossil record. A better understanding of human impacts world-wide, in conjunction with pre-scientific knowledge will make it easier to discuss the issues by removing ‘blame’. While continued spontaneous generation was accepted universally, there was the expectation that animals continued to reappear. New Zealand is one of the very best locations in the world to study many of these issues. Apart from the marine fossil record, some human impact events are extremely recent and the remains less disrupted by time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural selection generally operates at the level of the individual, or more specifically at the level of the gene. As a result, individual selection does not always favour traits which benefit the population or species as a whole. The spread of an individual gene may even act to the detriment of the organism in which it finds. Thus selection at the level of the individual can affect processes at the level of the organism, group or even at the level of the species. As most behaviours ultimately affect births, deaths and the distribution of individuals, it seems inevitable that behavioural decisions will have an impact on population dynamics and population densities. Behavioural decisions can often involve costs through allocation of energy into behavioural strategies, such as the investment into armaments involved in fighting over resources or increased mortality due to injury or increased predation risk. Similarly, behaviour may act o to benefit the population, in terms of higher survival and increased fecundity. Examples include increased investment through parental care, choosing a mate based on the nuptial gifts they may supply and choosing territories in the face of competition. Investigating the impact of behaviour on population ecology may seem like a trivial task, but it is likely to have important consequences at different levels. For example, antagonistic behaviour may occasionally become so extreme that it increases the risk of extinction, and such extinction risk may have important implications for conservation. As a corollary, any such behaviour may also act as a macroevolutionary force, weeding out populations with traits which, whilst beneficial to the individuals in the short term, ultimately result in population extinction. In this thesis, I examine how behaviours, specifically conflict and competition over a resource and aspects of behaviour involved in sexual selection, can affect population densities, and what the implications are for the evolution and ecology of the populations in question. It is found that both behaviours related to individual conflict and mating strategies can have an effect at the level of the population, but that various factors, such as a feedback between selection and population densities or macroevolution caused by species extinctions, may act to limit the intensity of conflicts that we observe in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cichlids are known for their explosive radiation especially in the African Great Lakes marked with a high level of lake endemism. These fishes have been characterized mainly along trophic and habitat differences, by variation in morphological structures such as teeth and jaws and by differences in body shape and coloration. Cichlids are important as a microcosm of macroevolution. The explosive radiation, young evolutionary scale, and the isolation of groups characterized with high levels of endemism and presence of living fossils makes the group important for evolutionary and genetic studies. Lake Victoria region cichlids which are isolated and relatively more recent in evolution were the last to be appreciated in their diversity. Recently Ole Seehausen has found scores of rock fishes in Lake Victoria which were up to then thought to be absent from the Lake and only known to occur in Lakes Malawi and Tanganyika. Greenwood put together the species groups of Lake Victoria, and later in the early 1980's revised the classification of haplochromine species to reflect the phyletic origin and interrelationship of the various groups in Lake Victoria region. Melan Stiassny has been interested in early evolution of cichlids while the likes of Paul Fuerst and Lees Kaufman and Axel Meyer have been interested and are working to explain the speciation mechanisms responsible for the explosive radiation and evolution of cichlids. Locally S.B Wandera and his student Getrude Narnulemo are spearheading the biodiversity and taxonomic studies of cichlids in Lake Victoria region

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000- fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous–Paleogene (K–Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. Keywords: haldanes, biological time, scaling, pedomorphosis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r(2)) for all Catarrhim genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Zoologia) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for antplantherbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade-offs with new trichomes) that may have affected the evolution of antplant associations. We measured seven EFN quantitative traits in all 105 species included in a well-supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on antEFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K-values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static-optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade-off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K-values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die geschlechtliche Fortpflanzung ist ein universelles Merkmal und erlaubt es genetische Variation innerhalb von Blütenpflanzen zu schaffen. Die Evolution der sexuellen und reproduktiven Systeme wurde hier auf mehreren zeitlichen Ebenen, in verschiedenen Arten von Lebensraum studiert und mit fast allen möglichen Methoden im Labor, im Gewächshaus sowie im Feld untersucht. Drei Hauptteile sind in dieser Arbeit enthalten und entsprechen jeweils einem unterschiedlichen Niveau der Zeit: Gattung, Untergattung und Arten. Der erste Teil zeigt, dass die PO-Verhältnisse Untersuchungen systematisch in jeder Pflanzen-Gattung oder Untergattung untersucht werden müssen. Dieses güngstige, schnelle und leistungsstarke Werkzeug kann eine Vielzahl von Informationen über die Modi der Pflanzenreproduktion produzieren, ohne die Verwendung von teuren und langen Experimenten. Darüber hinaus könnte diese Maßnahme auch ergänzende Daten über die Taxonomie dieser untersuchten Gruppen geben. Das zweite Kapitel befasst sich mehr mit der Taxonomie der Ehrenpreis(Veronica)-Arten als die beiden anderen und zeigt, dass verschiedene Ereignisse der interspezifischen Reproduktion in einem der Hotspots der Artenvielfalt in Europa (der Balkan-Halbinsel) auftreten. Die Ergebnisse zeigen, dass morphologische und genetische Daten inkongruent sind und die Analyse der Taxonomie dieser Arten oder Unterart schwierig ist. Das letzteKapitel erzählt die Geschichte einer erfolgreichen Invasion, die während des letzten Jahrhunderts in Europa ablief trotz der Tatsache, dass die Arten obligate Fremdbefruchter sind und dass keine Samen-Produktion in der Region beobachtet wurde. Dieses Manuskript erläutert den Weg der Pflanze, um die “Baker-Regel“ zu umgehen. Diese Regel besagt, dass selbst-inkompatible Arten erfolgloser bei der Invasion neuer Lebensräume sind. Dennoch schafft es die hier untersuchte Art einen großen Teil der europäischen Rasen zu bevölkern und zeigt dabei genetische und morphologische Veränderungen auf diesem Weg.rnSchließlich wird in diesen drei verschiedenen Papieren versucht, die Verbindung zwischen der Mikro-und Makroevolution in der geschlechtlichen Fortpflanzun in Ehrenpreis (Veronica) unter Betracht verschiedener sexueller Systeme und der Stammesgeschichte, sowie der Migration zu klären.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans affect biodiversity at the genetic, species, community, and ecosystem levels. This impact on genetic diversity is critical, because genetic diversity is the raw material of evolutionary change, including adaptation and speciation. Two forces affecting genetic variation are genetic drift (which decreases genetic variation within but increases genetic differentiation among local populations) and gene flow (which increases variation within but decreases differentiation among local populations). Humans activities often augment drift and diminish gene flow for many species, which reduces genetic variation in local populations and prevents the spread of adaptive complexes outside their population of origin, thereby disrupting adaptive processes both locally and globally within a species. These impacts are illustrated with collared lizards (Crotaphytus collaris) in the Missouri Ozarks. Forest fire suppression has reduced habitat and disrupted gene flow in this lizard, thereby altering the balance toward drift and away from gene flow. This balance can be restored by managed landscape burns. Some have argued that, although human-induced fragmentation disrupts adaptation, it will also ultimately produce new species through founder effects. However, population genetic theory and experiments predict that most fragmentation events caused by human activities will facilitate not speciation, but local extinction. Founder events have played an important role in the macroevolution of certain groups, but only when ecological opportunities are expanding rather than contracting. The general impact of human activities on genetic diversity disrupts or diminishes the capacity for adaptation, speciation, and macroevolutionary change. This impact will ultimately diminish biodiversity at all levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a simple mathematical model of biological macroevolution. The model describes an ecology of adapting, interacting species. The environment of any given species is affected by other evolving species; hence, it is not constant in time. The ecology as a whole evolves to a "self-organized critical" state where periods of stasis alternate with avalanches of causally connected evolutionary changes. This characteristic behavior of natural history, known as "punctuated equilibrium," thus finds a theoretical explanation as a self-organized critical phenomenon. The evolutionary behavior of single species is intermittent. Also, large bursts of apparently simultaneous evolutionary activity require no external cause. Extinctions of all sizes, including mass extinctions, may be a simple consequence of ecosystem dynamics. Our results are compared with data from the fossil record.