991 resultados para MACHINING TI-6AL-4V ALLOY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their high hardness and wear resistance, Si3N4 based ceramics are one of the most suitable cutting tool materials for machining cast iron, nickel alloys and hardened steels. However, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. This necessitates a process optimization when machining superalloys with Si3N4 based ceramic cutting tools. The tools are expected to withstand the heat and pressure developed when machining at higher cutting conditions because of their high hardness and melting point. This paper evaluates the performance of α-SiAlON tool in turning Ti-6Al-4V alloy at high cutting conditions, up to 250 m min-1, without coolant. Tool wear, failure modes and temperature were monitored to access the performance of the cutting tool. Test results showed that the performance of α-SiAl0N tool, in terms of tool life, at the cutting conditions investigated is relatively poor due probably to rapid notching and excessive chipping of the cutting edge. These facts are associated with adhesion and diffusion wear rate that tends to weaken the bond strength of the cutting tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RF magnetron concurrent sputtering of Hydroxyapatite and Ti forming functionally graded calcium phosphate-based composite bioactive films on Ti-6Al-4V orthopedic alloy is reported. Calcium oxide phosphate (4CaO•P2O5) is the main crystalline phase. In vitro cell culturing tests suggest outstanding biocompatibility of the Ca-P-Ti films. Images of the plasma-enhanced sputtering processes and cell culturing are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium alloys like Ti-6A-4V are the backbone materials for aerospace, energy and chemical industries. Hypoeutectic boron addition to Ti-6Al-4V alloy produces a reduction in as-cast grain size by roughly an order of magnitude resulting in the possibility of avoiding ingot breakdown step and thereby reducing the processing cost. In the present study, ISM processed as-cast boron added Ti-6Al-4V alloy is deformed in (alpha+beta)-phase field, where alpha-lath bending seemed to be the dominating deformation mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addition of boron in small quantities to various titanium alloys have shown significant improvement in mechanical behavior of materials. In the present study, electron back-scatter diffraction (EBSD) techniques have been applied to investigate the deformation microstructure evolution in boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) s(-1) and 1 s(-1)). The EBSD analyses indicated significant differences in deformed microstructure of the base alloy and the alloy containing boron. A strong subgrain formation tendency was observed along with inhomogeneous distribution of dislocations inside large a colonies of Ti64. In contrast, a colonies were relatively strain free for Ti64 + B, with more uniform dislocation density distribution. The observed difference is attributed to microstructural modifications viz, grain size refinement and presence of TiB particles at grain boundary produced due to boron addition. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray diffraction line profile analysis (XRDLPA) techniques have been applied to investigate the deformed microstructure of a recently developed boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) S-1 and 1 S-1). Microstructural parameters like average domain size, average microstrain within the domain and dislocation density of the two phases were determined using X-ray diffraction line profile analysis. The results indicate an increase in the microstrain and dislocation density for the alpha-phase and decrease for the beta-phase in the case of boron modified alloys as compared to the normal material. Microstructural modifications viz, the grain refinement and the presence of hard, brittle TiB particles in the case of boron modified alloy are held responsible for the observed difference in the dislocation density. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to their high strength-to-weight ratio, excellent mechanical properties and corrosion resistance, titanium (Ti) and its alloys, especially (alpha+beta) alloys like Ti-6Al-4V is the backbone materials for aerospace, energy, and chemical industries. Trace boron addition (similar to 0.1 wt. %) to the alloy Ti-6Al-4V produces a reduction in as-cast grain size by roughly an order of magnitude resulting in enhanced ductility, higher stiffness, strength and good fracture resistance. Boron addition could also affect the evolution of texture and microstructure in the material. The solidification microstructures of Boron free as well as Boron containing Ti-6Al-4V are found to be almost homogeneous from periphery towards the center of as-cast ingot in terms of both alpha-colony size and distribution. Boron addition substantially reduces alpha-colony size (similar to 50-80 mu m). A gradual change in alpha texture from periphery towards the center has been observed with orientations close to specific texture components suggesting the formation of texture zones. The mechanism of texture evolution can be visualized as a result of variant selection during solidification through (alpha+beta) phase field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the beta transus of boron-modified Ti-6Al-4V alloy was found to be almost equivalent to that of the normal alloy, although there is a difference in interstitial element content large enough to produce significant change. Compositional analysis confirms the scavenging ability of the boride particles that are present in the microstructure toward the interstitial elements. This factor can successfully retard the alpha -> beta phase transformation locally and increase the overall beta transus of boron-added material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addition of boron to cast Ti-6Al-4V alloy leads to significant refinement in grain size, which in turn improves processibilty as well as the mechanical properties of the as-cast alloy. Room temperature tensile and fatigue properties of Wrought Ti-6Al-4V-B alloys with B up to 0.09 wt.% are investigated. Thermo-mechanical processing at 950 degrees C caused kinking of alpha lamellae and alignment of TiB particles in the flow direction with a negligible change in prior beta grain and colony sizes, indicating the absence of dynamic recrystallisation during forging. Characterisation with the aid of X-ray and electron back scattered diffraction reveal a strong basal texture in B free alloy which gets randomised with the 0.09B addition in the forged condition. Marginal enhancement in tensile and fatigue properties upon forging is noted. B free wrought Ti-6Al-4V alloy exhibits better tensile strength as compared to B containing alloy, due to the operation of < c+a > slip on pyramidal planes with high value of CRSS as compared to < a > slip on basal and prismatic planes. Decrease in fatigue strength of Ti-6Al-4V-0.04B in as-cast and the wrought state is observed due to increase in the volume fraction of grain boundary a phase with B addition, which acts as a crack nucleation site. No significant effect of TiB particles on tensile and fatigue properties is observed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trace addition of B to Ti and its alloys leads to a marked microstructural refinement, which in turn enhances the tensile and fatigue properties of the as-cast alloys. This can be particularly advantageous in applications wherein Ti alloys are used in the as-cast form. In some of these, the environment containing H and Ti alloy components is susceptible to embrittlement due to H uptake. Whether the addition of B to Ti-6Al-4V improves the relative mechanical performance of such cast components used in H environments is examined in this work. Cast Ti-6Al-4V-xB (0 <= x <= 0.55 wt%) alloys were H charged at 500 and 700 degrees C for up to 4 h. Microstructures and room temperature tensile properties of the resulting alloys have been evaluated. Experimental results show that charging at 700 degrees C for 2 h leads to the formation of titanium hydride in the microstructure, which in turn causes severe embrittlement. For shorter durations of charging, a marginal increase in strength was noted, which is attributed to the solid solution strengthening by H. The mechanical performance of the B modified alloys was found to be relatively higher, implying that B addition not only refines the as-cast microstructure but also is beneficial in applications that involve H environment A direct correlation between the volume fraction of TiB particles in the microstructure and the relative reduction in the strength of H-embrittled alloys suggests that the addition of B to Ti alloys, in optimum quantities, can be utilized as a strategy to design alloys that are more resistant to H embrittlement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, high strength bulk ultrafine-grained titanium alloy Ti-6Al-4V bars were successfully processed using multi-pass warm rolling. Ti-6Al-4V bars of 12 mm diameter and several metres long were processed by multi-pass warm rolling at 650 degrees C, 700 degrees C and 750 degrees C. The highest achieved mechanical properties for Ti-6Al-4V in as rolled condition were yield strength 1191 MPa, ultimate tensile strength of 1299 MPa having an elongation of 10% when the rolling temperature was 650 degrees C. The concurrent evolution of microstructure and texture has been studied using optical microscopy, electron back scattered diffraction and x-ray diffraction. The significant improvement in mechanical properties has been attributed to the ultrafine-grained microstructure as well as the morphology of alpha and beta phases in the warm rolled specimens. The warm rolling of Ti-6Al-4V leads to formation of < 10 (1) over bar0 >alpha//RD fibre texture. This study shows that multi-pass warm rolling has potential to eliminate the costly and time consuming heat treatment steps for small diameter bar products, as the solution treated and aged (STA) properties are achievable in the as rolled condition itself. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of B, up to about 0.1 wt%, to Ti-6Al-4V (Ti64) reduces its as-cast grain and colony sizes by an order of magnitude. In this paper, the creep resistance of this alloy modified with 0.06 and 0.11 wt% B additions was investigated in the temperature range of 475-550 degrees C and compared with that of the base alloy. Conventional dead-weight creep tests as well as stress relaxation tests were employed for this purpose. Experimental results show that the B addition enhances both elevated temperature strength and creep properties of Ti64, especially at the lower end of the temperatures investigated. The steady state creep rate in the alloy with 0.11 wt% B was found to be an order of magnitude lower than that in the base alloy, and both the strain at failure as well as the time for rupture increases with the B content. These marked improvements in the creep resistance due to B addition to Ti64 were attributed primarily to the increased number of inter-phase interfaces - a direct consequence of the microstructural refinement that occurs with the B addition - that provide resistance to dislocation motion. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been previously reported that the addition of boron to Ti-6Al-4V results in significant refinement of the as-cast microstructure and enhancement in the strain hardening. However, the mechanism for the latter effect has not been adequately studied. The aim of this study was to understand the reasons for the enhancement in room temperature strain hardening on addition of boron to as cast Ti-6Al-4V alloy. A study was conducted on slip transmission using SEM, TEM, optical profilometry and four point probe resistivity measurements on un-deformed and deformed samples of Ti-6Al-4V-xB with five levels of boron. Optical profilometry was used to quantify the magnitude of offsets on slip traces which in turn provided information about the extent of planar or multiple slip. Studies on deformed samples reveal that while lath boundaries appear to easily permit dislocation slip transmission, colony boundaries are potent barriers to slip. From TEM studies it was also observed that while alloys containing lower boron underwent planar slip, deformation was more homogeneous in higher boron alloys due to multiple slip resulting from large number of colony boundaries. Multiple slip is also proposed to be the prime cause of the enhanced strain hardening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of small amount of boron to Ti and it alloys refines the as-cast microstructure and enhances the mechanical properties. In this paper, we employ nanoindentation on each of the constituent phases in the microstructure and `rule-of-mixture' type analysis to examine their relative contributions to the strength enhancement in a Ti-6Al-4V alloy modified with 0.3 wt% B. Our results indicate to two main contributors to the relatively higher flow strength of B-modified alloy vis-a-vis the base alloy: (a) strengthening of alpha phase due to the reduction in the effective slip length that occurs as a result of the microstructural refinement that occurs upon B addition, and (b) composite strengthening caused by the TiB whiskers present in the alloy. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new interrupting method was proposed and the split Hopkinson torsional bar (SHTB) was modified in order to eliminate the effect of loading reverberation on post-mortem observations. This makes the comparative study of macro- and microscopic observations on tested materials and relevant transient measurement of tau - gamma curve possible. The experimental results of the evolution of shear localization in in Ti-6Al-4V alloy studied with the modified SHTB are reported in the paper. The collapse of shear stress seems to be closely related to the appearance of a certain critical coalescence of microcracks. The voids may form within the localized shear zone at a quite early stage. Finally, void coalescence results in elongated cavities and their extension leads to fracture along the shear band.