990 resultados para Máquinas de vapor


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Resumen extractado de la publicación

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novela que relata un caso real, utilizada para el estudio interdisciplinar de la ciencia, tecnología y sociedad en la educación secundaria tanto desde el área de tecnología como desde el área de sociales. Describe el entorno tecnológico que había en Barcelona durante la Primera Guerra Mundial y la renovación tecnológica que trae consigo la industrialización del siglo XIX contextualizándolo históricamente a nivel local (Cataluña) y nacional. Se describen los materiales, se formulan los procesos, se esquematizan y explican los mecanismos, (máquinas de vapor, dinamos, aleaciones, etc.), etc. Se pretende que el alumno sea capaz de comprender las relaciones humanidad-naturaleza, relaciones sociales y producción respecto a los cambios tecnológicos, identificar las causas de los hechos históricos y analizar sus consecuencias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La evolución de la maquinaria agrícola en el siglo XX ha sido tan espectacular que, de los tres grandes avances habidos a lo largo de la historia de la maquinaria agrícola, dos de ellos podemos considerar que marcan el comienzo y el fin del siglo XX. El primer avance fundamental se dio el día en que el hombre que removía la tierra golpeándola con una herramienta tipo azada decidió avanzar con ella introducida en el suelo venciendo la fuerza de tiro. Nació así el arado en un tiempo indeterminado de la prehistoria. Esa primera máquina y las pocas que en muchos siglos después se diseñaron para trabajar la tierra estaban accionadas por esfuerzo muscular, ya fuera el del hombre o de los animales de tiro. El siguiente paso decisivo, que libra al hombre de la necesidad de contar con fuerza muscular para trabajar el campo, se dio al aplicar a la agricultura la energía generada por motores que consumen combustibles. Aunque a lo largo del siglo XIX se construyeron máquinas de vapor estacionarias denominadas locomóviles que, mediante un juego de cables y poleas, conseguían tirar de los arados, su uso fue escaso y los agricultores no se libraron de seguir con su collera de muías o yunta de bueyes. Sin embargo, la construcción del primer tractor con motor de combustión interna, debida a Froelich en 1892, marca el inicio de la actual tractorización. A partir de ese momento, tanto el tamaño de las máquinas como el de la superficie trabajada por un agricultor pueden crecer, porque es la energía desarrollada por un motor la que realiza los esfuerzos necesarios. Esta fecha de 1892 podemos considerarla el inicio del siglo XX en maquinaria agrícola. Por último, en época reciente estamos asistiendo al empleo de dispositivos electrónicos e informáticos en las máquinas, los cuales miden diversas variables relativas al trabajo que desarrolla, guardan la información en registros e, incluso, deciden cómo debe comandarse la máquina. No sólo estamos liberados de realizar esfuerzos, sino también de mantener toda nuestra atención en el trabajo y tomar decisiones en función de las características del terreno, cultivo, etc. Estas técnicas, que a nivel de investigación y prototipo existen desde los años 90, marcan el inicio del siglo XXI en el que es de esperar que se difundan. Por tanto, ya tenemos encuadrado el siglo XX como el periodo comprendido desde que el esfuerzo para trabajar la tierra deja de ser muscular hasta que el cerebro que toma las decisiones podrá dejar de ser humano.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contiene: T. I -- T. II (288 p., 5-8 h. de lám. pleg.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tít. de antep.: "Encyclopédie-Roret. Nouveau manuel des machines a vapeur appliquées a la marine"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Em 2006, a IEA (Agência Internacional de Energia), publicou alguns estudos de consumos mundiais de energia. Naquela altura, apontava na fabricação de produtos, um consumo mundial de energia elétrica, de origem fóssil de cerca 86,16 EJ/ano (86,16×018 J) e um consumo de energia nos sistemas de vapor de 32,75 EJ/ano. Evidenciou também nesses estudos que o potencial de poupança de energia nos sistemas de vapor era de 3,27 EJ/ano. Ou seja, quase tanto como a energia consumida nos sistemas de vapor da U.E. Não se encontraram números relativamente a Portugal, mas comparativamente com outros Países publicitados com alguma similaridade, o consumo de energia em vapor rondará 0,2 EJ/ano e por conseguinte um potencial de poupança de cerca 0,02 EJ/ano, ou 5,6 × 106 MWh/ano ou uma potência de 646 MW, mais do que a potência de cinco barragens Crestuma/Lever! Trata-se efetivamente de muita energia; interessa por isso perceber o onde e o porquê deste desperdício. De um modo muito modesto, pretende-se com este trabalho dar algum contributo neste sentido. Procurou-se evidenciar as possibilidades reais de os utilizadores de vapor de água na indústria reduzirem os consumos de energia associados à sua produção. Não estão em causa as diferentes formas de energia para a geração de vapor, sejam de origem fóssil ou renovável; interessou neste trabalho estudar o modo de como é manuseado o vapor na sua função de transporte de energia térmica, e de como este poderá ser melhorado na sua eficiência de cedência de calor, idealmente com menor consumo de energia. Com efeito, de que servirá se se optou por substituir o tipo de queima para uma mais sustentável se a jusante se continuarem a verificarem desperdícios, descarga exagerada nas purgas das caldeiras com perda de calor associada, emissões permanentes de vapor para a atmosfera em tanques de condensado, perdas por válvulas nos vedantes, purgadores avariados abertos, pressão de vapor exageradamente alta atendendo às temperaturas necessárias, “layouts” do sistema de distribuição mal desenhados, inexistência de registos de produção e consumos de vapor, etc. A base de organização deste estudo foi o ciclo de vapor: produção, distribuição, consumo e recuperação de condensado. Pareceu importante incluir também o tratamento de água, atendendo às implicações na transferência de calor das superfícies com incrustações. Na produção de vapor, verifica-se que os maiores problemas de perda de energia têm a ver com a falta de controlo, no excesso de ar e purgas das caldeiras em exagero. Na distribuição de vapor aborda-se o dimensionamento das tubagens, necessidade de purgas a v montante das válvulas de controlo, a redução de pressão com válvulas redutoras tradicionais; será de destacar a experiência americana no uso de micro turbinas para a redução de pressão com produção simultânea de eletricidade. Em Portugal não se conhecem instalações com esta opção. Fabricantes da República Checa e Áustria, têm tido sucesso em algumas dezenas de instalações de redução de pressão em diversos países europeus (UK, Alemanha, R. Checa, França, etc.). Para determinação de consumos de vapor, para projeto ou mesmo para estimativa em máquinas existentes, disponibiliza-se uma série de equações para os casos mais comuns. Dá-se especial relevo ao problema que se verifica numa grande percentagem de permutadores de calor, que é a estagnação de condensado - “stalled conditions”. Tenta-se também evidenciar as vantagens da recuperação de vapor de flash (infelizmente de pouca tradição em Portugal), e a aplicação de termocompressores. Finalmente aborda-se o benchmarking e monitorização, quer dos custos de vapor quer dos consumos específicos dos produtos. Esta abordagem é algo ligeira, por manifesta falta de estudos publicados. Como trabalhos práticos, foram efetuados levantamentos a instalações de vapor em diversos sectores de atividades; 1. ISEP - Laboratório de Química. Porto, 2. Prio Energy - Fábrica de Biocombustíveis. Porto de Aveiro. 3. Inapal Plásticos. Componentes de Automóvel. Leça do Balio, 4. Malhas Sonix. Tinturaria Têxtil. Barcelos, 5. Uma instalação de cartão canelado e uma instalação de alimentos derivados de soja. Também se inclui um estudo comparativo de custos de vapor usado nos hospitais: quando produzido por geradores de vapor com queima de combustível e quando é produzido por pequenos geradores elétricos. Os resultados estão resumidos em tabelas e conclui-se que se o potencial de poupança se aproxima do referido no início deste trabalho.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the purpose of provide students with the practical contact with the operation of a thermoelectric plant, the steam plant Laboratory College of Engineering Guaratinguetá was restored, this work was undertaken so that the necessary equipment was specified for this steam plant had their instrumented processes, enabling greater precision of the measurements performed in the tests and also storing your information. The instrumentation of the plant is to approximate the practices carried out in the laboratory with real situations encountered in industrial steam plant, thus collaborating with the most comprehensive training of students and ensuring the safety of operations performed in the laboratory

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente proyecto consiste en el estudio detallado de las solicitaciones mecánicas a las que se encuentra sometido un álabe correspondiente a la sección de baja presión de una turbina de vapor. Primeramente se llevará a cabo una introducción a este tipo de turbomáquinas con el fin de definir conceptos relevantes como el grado de reacción o el triángulo de velocidades, necesarios para comprender el funcionamiento de estas máquinas. A medida que se avance en la explicación de los fundamentos teóricos de la turbina de vapor, se irá profundizando cada vez más hasta llegar a la corona de álabes del rotor. Aquí se describirán las fuerzas de distinta naturaleza que soportan los álabes en condiciones de trabajo, así como el principio de formación de humedad que ocurre en los últimos escalonamientos de la etapa de baja presión. Una vez revisados todos los conceptos teóricos de interés, se pasará a simular con ayuda de un programa de Elementos Finitos la distribución de velocidades y de presión del flujo de vapor a su paso por un álabe de la última corona del rotor. El objetivo que se persigue es cuantificar tanto las tensiones mecánicas como los desplazamientos por deformación a los que se encuentra sometido el álabe debido a la interacción con el fluido a elevada velocidad. Posteriormente, como ampliación a este modelo, se ha tenido en cuenta el efecto de los condensados (pequeñas gotas de agua) que se forman en los últimos escalonamientos de la turbina debido a grandes subenfriamientos locales del vapor. Estas gotas impactan sobre el lado de succión del perfil del álabe, por tanto su contribución a los valores de tensión y desplazamiento que experimenta el álabe también será cuantificada en el programa de Elementos Finitos. Por último, se hará una recopilación de las principales conclusiones obtenidas tras el modelo simulado por ordenador, así como de la importancia de la calidad del vapor para el buen funcionamiento de la turbomáquina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo se enfoca en el diseño de una turbina de vapor de carácter experimental para simular, en un laboratorio de transferencia térmica, la dinámica propia de una turbina de mayor tamaño en el circuito secundario de un ciclo de potencia. La máquina diseñada produciría 185 kW de potencia en el eje a 9.000 RPM con un rendimiento interno del 88 %, tomando en la entrada 0,4 kg/s de vapor saturado a 40 bar y descargando a una presión de 1,5 bar. Se desarrolló la teoría de turbomáquinas necesaria para realizar los cálculos fuidodinámicos y se propuso un método de diseño apropiado para el alcance del trabajo. Se decidió que la turbina sería de tres etapas, dos Curtis y una de impulso, y se realizaron los cálculos correspondientes. Una vez que el diseño fluidodinámico estaba definido, se procedió a dimensionar los distintos elementos mecánicos, con el alcance correspondiente a ingeniería conceptual y básica. Se realizaron detalladamente los cálculos propios del dimensionado del rotor (eje y discos), rodamientos, carcasa, válvula de seguridad de presión y asociados. Además se presentó el diseño conceptual de los elementos restantes, sistema de control y otros auxiliares. Finalmente, se realizaron los modelos en software 3D de todas las piezas y se produjeron los planos correspondientes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los Generadores de vapor (GVs) en una central nuclear están conformados por un manojo de tubos que actúan como una barrera entre el sistema primario contaminado y el secundario. A través de los tubos de GVs (TGVs) se desarrolla el intercambio de calor que produce el vapor que después accionará las turbinas de la central. Estos componentes están sometidos a unas condiciones térmicas, químicas y mecánicas bastante severas, que pueden provocar la aparición de defectos geométricos y volumétricos comprometiendo su integridad estructural. Es por esta razón que el mantenimiento de los GVs es importante para la operación económica y segura de las centrales nucleares. Uno de los principales mecanismos de desgaste de los tubos de GVs es el fenómeno conocido como fretting. El mismo provoca el adelgazamiento de las paredes de los TGVs debido a pequeños movimientos relativos entre superficies en contacto. Dado el caso particular de los GVs del reactor CAREM-25 en los que el circuito primario se encuentra del lado externo de los tubos que lo constituyen, la ocurrencia de este mecanismo de daño podría comprometer la integridad de los mismos haciéndolos más susceptibles al daño por colapso. El presente trabajo constituye una continuación del Proyecto integrador finalizado en el 2015 por Pablo Lazo en el que se evaluó la influencia de efectos de ovalización en el colapso de los tubos de los GVs. Se evalúa ahora la influencia de defectos volumétricos debido a fretting. Esto se realizó a través de modelos numéricos que estiman la presión de colapso en los tubos con y sin defecto. Los resultados de los modelos se compararon con resultados de expresiones analíticas obtenidas por otros autores, valores experimentales propios y otros valores de referencia. A partir del análisis de los resultados se derivaron algunas conclusiones que ayudan a entender el comportamiento de los tubos de GVs con defectos debido a mecanismo de daño por fretting. Además se desarrollaron expresiones matemáticas que ayudan a definir las dimensiones de los defectos que comprometen la integridad estructural de los TGVs en el caso del reactor CAREM-25.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo se enfoca en el diseño de una turbina de vapor de carácter experimental para simular, en un laboratorio de transferencia térmica, la dinámica propia de una turbina de mayor tamaño en el circuito secundario de un ciclo de potencia. La máquina diseñada produciría 185 kW de potencia en el eje a 9.000 RPM con un rendimiento interno del 88 %, tomando en la entrada 0,4 kg/s de vapor saturado a 40 bar y descargando a una presión de 1,5 bar. Se desarrolló la teoría de turbomáquinas necesaria para realizar los cálculos fuidodinámicos y se propuso un método de diseño apropiado para el alcance del trabajo. Se decidió que la turbina sería de tres etapas, dos Curtis y una de impulso, y se realizaron los cálculos correspondientes. Una vez que el diseño fluidodinámico estaba definido, se procedió a dimensionar los distintos elementos mecánicos, con el alcance correspondiente a ingeniería conceptual y básica. Se realizaron detalladamente los cálculos propios del dimensionado del rotor (eje y discos), rodamientos, carcasa, válvula de seguridad de presión y asociados. Además se presentó el diseño conceptual de los elementos restantes, sistema de control y otros auxiliares. Finalmente, se realizaron los modelos en software 3D de todas las piezas y se produjeron los planos correspondientes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los Generadores de vapor (GVs) en una central nuclear están conformados por un manojo de tubos que actúan como una barrera entre el sistema primario contaminado y el secundario. A través de los tubos de GVs (TGVs) se desarrolla el intercambio de calor que produce el vapor que después accionará las turbinas de la central. Estos componentes están sometidos a unas condiciones térmicas, químicas y mecánicas bastante severas, que pueden provocar la aparición de defectos geométricos y volumétricos comprometiendo su integridad estructural. Es por esta razón que el mantenimiento de los GVs es importante para la operación económica y segura de las centrales nucleares. Uno de los principales mecanismos de desgaste de los tubos de GVs es el fenómeno conocido como fretting. El mismo provoca el adelgazamiento de las paredes de los TGVs debido a pequeños movimientos relativos entre superficies en contacto. Dado el caso particular de los GVs del reactor CAREM-25 en los que el circuito primario se encuentra del lado externo de los tubos que lo constituyen, la ocurrencia de este mecanismo de daño podría comprometer la integridad de los mismos haciéndolos más susceptibles al daño por colapso. El presente trabajo constituye una continuación del Proyecto integrador finalizado en el 2015 por Pablo Lazo en el que se evaluó la influencia de efectos de ovalización en el colapso de los tubos de los GVs. Se evalúa ahora la influencia de defectos volumétricos debido a fretting. Esto se realizó a través de modelos numéricos que estiman la presión de colapso en los tubos con y sin defecto. Los resultados de los modelos se compararon con resultados de expresiones analíticas obtenidas por otros autores, valores experimentales propios y otros valores de referencia. A partir del análisis de los resultados se derivaron algunas conclusiones que ayudan a entender el comportamiento de los tubos de GVs con defectos debido a mecanismo de daño por fretting. Además se desarrollaron expresiones matemáticas que ayudan a definir las dimensiones de los defectos que comprometen la integridad estructural de los TGVs en el caso del reactor CAREM-25.