999 resultados para Lycopene p-cyclase
Resumo:
The composition of carotenoids, along with anthocyanins and chlorophyll, accounts for the distinctive range of colour found in the Actinidia (kiwifruit) species. Lutein and beta-carotene are the most abundant carotenoids found during fruit development, with beta-carotene concentration increasing rapidly during fruit maturation and ripening. In addition, the accumulation of beta-carotene and lutein is influenced by the temperature at which harvested fruit are stored. Expression analysis of carotenoid biosynthetic genes among different genotypes and fruit developmental stages identified Actinidia lycopene beta-cyclase (LCY-β) as the gene whose expression pattern appeared to be associated with both total carotenoid and beta-carotene accumulation. Phytoene desaturase (PDS) expression was the least variable among the different genotypes, while zeta carotene desaturase (ZDS), beta-carotene hydroxylase (CRH-β), and epsilon carotene hydroxylase (CRH-ε) showed some variation in gene expression. The LCY-β gene was functionally tested in bacteria and shown to convert lycopene and delta-carotene to beta-carotene and alpha-carotene respectively. This indicates that the accumulation of beta-carotene, the major carotenoid in these kiwifruit species, appears to be controlled by the level of expression of LCY-β gene.
Resumo:
The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1 B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.
Resumo:
利用3’和5' RACE、Uneven PCR等技术成功地从胡萝卜肉质根中分离了茄红素β-环化酶、茄红素ε.环化酶和辣椒红/辣椒玉红素合酶cDNA以及茄红素β一环化酶基因5’端上游的部分序列,并研究了它们在胡萝卜肉质根中的表达模式,对胡萝卜中类胡萝卜素代谢和积累的分子机制进行了探讨。 胡萝卜茄红素β--环化酶cDNA(DCLYC1)长2089bp,包含一个1515bp的开放阅读框架,所编码蛋白长505个氨基酸,其一级结构与番茄、烟草和辣椒等植物的茄红素β--环化酶高度同源。与农杆菌和夏噬孢欧文氏菌等微生物的茄红素环化酶相似性较差,但相互间有3个短小的同源区,且蛋白疏水模式也十分相似。茄红素β--环化酶在胡萝卜肉质根中的表达受品种和组织特异性的调控。在紫色的富含茄红素的“齐头红”胡萝卜肉质根中该基因的表达受到了强烈的抑制,相反,在橙色的富含β--和α--胡萝卜素的“CA201”胡萝卜肉质根中表达十分活跃。茄红素β--环化酶和八氢番茄红素合酶基因的表达在肉质根的韧皮部和木质部之间存在差异,在韧皮部中的表达强于木质部。类胡萝卜素生物合成基因的差异表达是造成不同胡萝卜品种和组织中积累的类胡萝卜素的种类和含量不同的原因。 对紫色品种和橙色品种的茄红素β--环化酶基因组DNA的PCR分析表明两者的基因组中均存在茄红素β一环化酶基因。为了探明茄红素β--环化酶基因在不同胡萝卜品种中差异表达的原因,利用Uneven pCR从胡萝卜基因组DNA中分离克隆了茄红素β--环化酶基因5’端上游部分序列。该DNA片段长1.7kb,3’端286bp区域与DCLYC1的5’端序列交叉重叠,在GenBank中没有找到相似的序列。在1294bp-1336bp位置串连着3个TATA盒,结构十分特殊,在TATA盒上游大约700bβ位置有2个CAAT盒。瞬间表达实验证明它具有启动子活性,可以指导GUS基因在胡萝卜肉质根、叶片和茎等组织中表达。然而,其表达模式却与茄红素B.环化酶基因的Northern杂交结果不同,主要在韧皮部和木质部交界的分生组织中表达,同时在紫色胡萝卜肉质根中其表达并没有受到抑制。这一片段可能还不是完整的胡萝卜茄红素β--环化酶基因启动子,缺少了调控基因进行品种和组织特异性表达的部分序列元件。因此,分离更长的胡萝卜茄红素环化酶基因5’端上游序列,将有助于揭示茄红素β一环化酶基因呈品种和组织特异性表达的分子机制。 所分离的胡萝卜辣椒红/辣椒玉红素合酶cDNA (DCCCS)长1744bp,包含一个长1476bp的开放阅读框架,所编码蛋白长492个氨基酸。与辣椒和柑桔CCS的氨基酸序列同源性分别为为76.6%和75.3%,与DCLYC1等其它植物茄红素β--环化酶的氨基酸序列同源性为63.9-67.4%。DCCCS的表达模式在两个不同颜色的品种之间十分相似,在肉质根韧皮部中强烈表达,而在木质部中表达明显受到了抑制。由于CCS与LYC-B高度同源,有人认为CCS可能具有茄红素环化酶活性,然而本研究结果表明,DCCCS虽然在紫色的齐头红胡萝卜肉质根韧皮部中强烈表达,却没有影响细胞中积累大量的茄红素,因此DCCCS即使具有茄红素环化酶作用,其活性也是极低的。 分离到的胡萝卜茄红素ε--环化酶cDNA片段(DCL YC-E)长1264bp,包含了完整的3’端,5’端尚不完整。按照引物LYCP1上的阅读框架进行翻译得到长385个氨基酸的肽链与莴苣、番茄和拟南芥LYC-E肽链相应区域的氨基酸序列高度同源,达80.5%以上,其中与莴苣茄红素ε--环化酶最为接近。与拟南芥茄红素ε--环化酶第448位基团和莴苣茄红素ε--环化酶第457位基团对应的氨基酸基团为H。这一基团是一个分子开关,决定茄红素ε--环化酶是催化茄红素的一端还是两端形成ε--环,因此,胡萝卜茄红素ε--环化酶可能与莴苣茄红素ε--环化酶具有相同的功能,即可以催化对称的线性茄红素的两端均形成ε--环,生成双ε--环胡萝卜素。DCLYC-E在胡萝卜肉质根中表达模式与DCLYCI不同,在紫色品种齐头红肉质根韧皮部中表达十分强烈,没有受到抑制,而且明显强于木质部;在橙色品种CA201中DCLYCE的表达模式与DCLYCI相似,韧皮部中表达强,而木质部中相对弱得多。DCL YC-E的表达模式在所测试品种间没有差异。在富含茄红素的齐头红胡萝卜肉质根中DCL YC-E强烈表达,可见它并没有将茄红素大量转化为双ε--环胡萝卜素,因此该酶的功能和活性有待进一步研究。
Resumo:
Aims/hypothesis: Patients with type 1 diabetes mellitus are more susceptible than healthy individuals to exercise-induced oxidative stress and vascular endothelial dysfunction, which has important implications for the progression of disease. Thus, in the present study, we designed a randomised double-blind, placebo-controlled trial to test the original hypothesis that oral prophylaxis with vitamin C attenuates rest and exercise-induced free radical-mediated lipid peroxidation in type 1 diabetes mellitus. Methods: All data were collected from hospitalised diabetic patients. The electron paramagnetic resonance spectroscopic detection of spin-trapped a-phenyl-tert-butylnitrone (PBN) adducts was combined with the use of supporting markers of lipid peroxidation and non-enzymatic antioxidants to assess exercise-induced oxidative stress in male patients with type 1 diabetes (HbA1c 7.9±1%, n=12) and healthy controls (HbA1c 4.6±0.5%, n=14). Following participant randomisation using numbers in a sealed envelope, venous blood samples were obtained at rest, after a maximal exercise challenge and before and 2 h after oral ingestion of 1 g ascorbate or placebo. Participants and lead investigators were blinded to the administration of either placebo or ascorbate treatments. Primary outcome was the difference in changes in free radicals following ascorbate ingestion. Resuts: Six diabetic patients and seven healthy control participants were randomised to each of the placebo and ascorbate groups. Diabetic patients (n=12) exhibited an elevated concentration of PBN adducts (p<0.05 vs healthy, n=14), which were confirmed as secondary, lipid-derived oxygen-centred alkoxyl (RO•) radicals (a nitrogen=1.37 mT and aßhydrogen=0.18 mT). Lipid hydroperoxides were also selectively elevated and associated with a depression of retinol and lycopene (p<0.05 vs healthy). Vitamin C supplementation increased plasma vitamin C concentration to a similar degree in both groups (p<0.05 vs pre-supplementation) and attenuated the exercise-induced oxidative stress response (p<0.05 vs healthy). There were no selective treatment differences between groups in the primary outcome variable. Conclusions/ interpretation: These findings are the first to suggest that oral vitamin C supplementation provides an effective prophylaxis against exercise-induced free radical-mediated lipid peroxidation in human diabetic blood.
Resumo:
Mitochondrial free radical formation has been implicated as a potential mechanism underlying degenerative senescence, although human data are lacking. Therefore, the present study was designed to examine if resting and exercise-induced intramuscular free radical-mediated lipid peroxidation is indeed increased across the spectrum of sedentary aging. Biopsies were obtained from the vastus lateralis in six young (26 ± 6 yr) and six aged (71 ± 6 yr) sedentary males at rest and after maximal knee extensor exercise. Aged tissue exhibited greater (P < 0.05 vs. the young group) electron paramagnetic resonance signal intensity of the mitochondrial ubisemiquinone radical both at rest (+138 ± 62%) and during exercise (+143 ± 40%), and this was further complemented by a greater increase in a-phenyl-tert-butylnitrone adducts identified as a combination of lipid-derived alkoxyl-alkyl radicals (+295 ± 96% and +298 ± 120%). Lipid hydroperoxides were also elevated at rest (0.190 ± 0.169 vs. 0.148 ± 0.071 nmol/mg total protein) and during exercise (0.567 ± 0.259 vs. 0.320 ± 0.263 nmol/mg total protein) despite a more marked depletion of ascorbate and uptake of a/ß-carotene, retinol, and lycopene (P < 0.05 vs. the young group). The impact of senescence was especially apparent when oxidative stress biomarkers were expressed relative to the age-related decline in mitochondrial volume density and absolute power output at maximal exercise. In conclusion, these findings confirm that intramuscular free radical-mediated lipid peroxidation is elevated at rest and during acute exercise in aged humans.
Resumo:
Background
High density lipoproteins (HDL) have many cardioprotective roles; however, in subjects with type 2 diabetes (T2D) these cardioprotective properties are diminished. Conversely, increased fruit and vegetable (F&V) intake may reduce cardiovascular disease risk, although direct trial evidence of a mechanism by which this occurs in subjects with T2D is lacking. Therefore, the aim of this study was to examine if increased F&V consumption influenced the carotenoid content and enzymes associated with the antioxidant properties of HDL in subjects with T2D.
MethodsEighty obese subjects with T2D were randomised to a 1- or ≥6-portion/day F&V diet for 8-weeks. Fasting serum was collected pre- and post-intervention. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Carotenoids were measured in serum, HDL2 and HDL3 by high performance liquid chromatography. The activity of paraoxonase-1 (PON-1) was measured in serum, HDL2 and HDL3 by a spectrophotometric assay, while the activity of lecithin cholesterol acyltransferase (LCAT) was measured in serum, HDL2 and HDL3 by a fluorometric assay.
ResultsIn the ≥6- vs. 1-portion post-intervention comparisons, carotenoids increased in serum, HDL2 and particularly HDL3, (α-carotene, p = 0.008; β-cryptoxanthin, p = 0.042; lutein, p = 0.012; lycopene, p = 0.016), as did the activities of PON-1 and LCAT in HDL3 (p = 0.006 and 0.044, respectively).
ConclusionTo our knowledge, this is the first study in subjects with T2D to demonstrate that increased F&V intake augmented the carotenoid content and influenced enzymes associated with the antioxidant properties of HDL. We suggest that these changes would enhance the cardioprotective properties of this lipoprotein.
Resumo:
Activation of protein kinase C (PKC) causes multiple effects on adenylyl cyclase (AC), (i) an inhibition of (hormone) receptor/G$\sb{\rm s}$ coupling, consistent with PKC modification of the receptor and (ii) a postreceptor sensitization consistent with a PKC-mediated modification of the stimulatory (G$\sb{\rm s}$) or inhibitory (G$\sb{\rm i}$) G-proteins or the catalyst (C) of AC. In L cells expressing the wild-type beta-adrenergic receptor ($\beta$AR) 4-$\beta$ phorbol 12-myristate-13-acetate (PMA) caused 2-3-fold increases in the K$\sb{\rm act}$ and V$\sb{\rm max}$ for epinephrine-stimulated AC activity and an attenuation of GTP-mediated inhibition of AC. Deletion of a concensus site for PKC phosphorylation (amino acids 259-262) from the $\beta$AR eliminated the PMA-induced increase in the K$\sb{\rm act}$, but had no effect on the other actions of PMA. PMA also increased the K$\sb{\rm act}$ and V$\sb{\rm max}$ for prostaglandin E$\sb1$ (PGE$\sb1$)-stimulated AC and the V$\sb{\rm max}$ for forskolin-stimulated AC. Maximal PMA-induced sensitizations were observed when AC was assayed in the presence of 10 $\mu$M GTP and 0.3 mM (Mg$\sp{++}$).^ Liao et al. (J. Biol. Chem. 265:11273-11284 (1990)) have shown that the P$\sb2$ purinergic receptor agonist ATP stimulates hydrolysis of 4,5 inositol bisphosphate (PIP$\sb2$) by phospholipase C (PLC) in L cells. To determine if agonists that stimulate PLC and PMA had similar effects on AC function we compared the effects of ATP and PMA. ATP caused a rapid 50-150% sensitization of PGE$\sb1$-, epinephrine-, and forskolin-stimulated AC activity with an EC$\sb{50}$ of 3 $\mu$M ATP. The sensitization was similar (i.e. Mg$\sp{++}$ and GTP sensitivity) to that caused by 10 nM PMA. However, unlike PMA ATP did not affect the K$\sb{\rm act}$ for hormone-stimulated AC and its effects were unaltered by down-regulation of PKCs following long term PMA treatment. Our results demonstrate that a PKC concensus site in the $\beta$AR, is required for the PMA-induced decrease in receptor/G$\sb{\rm s}$ coupling. Our data also indicate that activation of P$\sb2$ purinergic receptors by ATP may be important in the sensitization of AC in L cells. The mechanism behind this effect remains to be determined. ^
Resumo:
Previous complementation and mapping of mutations that change the usual yellow color of the Zygomycete Phycomyces blakesleeanus to white or red led to the definition of two structural genes for carotene biosynthesis. We have cloned one of these genes, carRA, by taking advantage of its close linkage to the other, carB, responsible for phytoene dehydrogenase. The sequences of the wild type and six mutants have been established, compared with sequences in other organisms, and correlated with the mutant phenotypes. The carRA and carB coding sequences are separated by 1,381 untranslated nucleotides and are divergently transcribed. Gene carRA contains separate domains for two enzymes, lycopene cyclase and phytoene synthase, and regulates the overall activity of the pathway and its response to physical and chemical stimuli from the environment. The lycopene cyclase domain of carRA derived from a duplication of a gene from a common ancestor of fungi and Brevibacterium linens; the phytoene synthase domain is similar to the phytoene and squalene synthases of many organisms; but the regulatory functions appear to be specific to Phycomyces.
Resumo:
Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.
Resumo:
Lycopene is a phytochemical that belongs to a group of pigments known as carotenoids. It is red, lipophilic and naturally occurring in many fruits and vegetables, with tomatoes and tomato-based products containing the highest concentrations of bioavailable lycopene. Several epidemiological studies have linked increased lycopene consumption with decreased prostate cancer risk. These findings are supported by in vitro and in vivo experiments showing that lycopene not only enhances the antioxidant response of prostate cells, but that it is even able to inhibit proliferation, induce apoptosis and decrease the metastatic capacity of prostate cancer cells. However, there is still no clearly proven clinical evidence supporting the use of lycopene in the prevention or treatment of prostate cancer, due to the only limited number of published randomized clinical trials and the varying quality of existing studies. The scope of this article is to discuss the potential impact of lycopene on prostate cancer by giving an overview about its molecular mechanisms and clinical effects. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Gac fruits were physically measured and stored under ambient conditions for up to 2 weeks to observe changes in carotenoid contents (lycopene and beta carotene) in its aril. Initial concentrations in the aril of lycopene were from 2.378 mg/g fresh weight (FW) to 3.728 mg/g FW and those of beta carotene were from 0.257 to 0.379 mg/g FW. Carotenoid concentrations in the aril remained stable after 1 week but sharply declined after 2 weeks of storage. Gac oil, pressed from gac aril, has similar concentrations of lycopene and beta carotene (2.436 and 2.592 mg/g, respectively). Oil was treated with 0.02% of butylated hydroxytoluene, or with a stream of nitrogen or untreated then stored in the dark for up to 15 or 19 weeks under different temperatures (5 °C, ambient, 45 and 60 °C). Lycopene and beta carotene in control gac oil degraded following the first-order kinetic model. The degradation rate of lycopene and beta carotene in the treated oil samples were lower than that in the control oil but the first-order kinetic was not always followed. However, both lycopene and beta carotene degraded quickly in gac oil with the first-order kinetic under high temperature conditions (45 and 60 °C) regardless of the treatments used. © 2009 Elsevier Ltd. All rights reserved.
Autoinhibitory mechanism and activity-related structural changes in a mycobacterial adenylyl cyclase
Resumo:
An adenylyl cyclase from Mycobacterium avium, Mal 120, is a functional orthologue of a pseudogene Rv1120c from Mycobacterium tuberculosis. We report the crystal structure of Mal 120 in a monomeric form and its truncated construct as a dimer. Mal 120 exists as a monomer in solution and crystallized as a monomer in the absence of substrate or inhibitor. An additional alpha-helix present at the N-terminus of the monomeric structure blocks the active site by interacting with the substrate binding residues and occupying the dimer interface region. However, the enzyme has been found to be active in solution, indicating the movement of the helix away from the interface to facilitate the formation of active dimers in conditions favourable for catalysis. Thus, the N-terminal helix of Ma1120 keeps the enzyme in an autoinhibited state when it is not active. Deletion of this helix enabled us to crystallize the molecule as an active homodimer in the presence of a P-site inhibitor 2',5'-dideoxy-3'-ATP, or pyrophosphate along with metal ions. The substrate specifying lysine residue plays a dual role of interacting with the substrate and stabilizing the dimer. The dimerization loop region harbouring the second substrate specifying residue, an aspartate, shows significant differences in conformation and position between the monomeric and dimeric structures. Thus, this study has not only revealed that significant structural transitions are required for the interconversion of the inactive and the active forms of the enzyme, but also provided precise nature of these transitions. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
10 p.
Resumo:
In plasma membranes derived from bovine mesenteric lymphatic smooth muscle cells, guanine nucleotide and forskolin stimulated adenylyl cyclase (AC) activity in a concentration-dependent manner, indicative of the presence of the stimulatory G-protein G(s) linked to AC. There was no significant enzyme inhibition by low concentrations of guanine nucleotide and no effect on basal or guanine nucleotide-stimulated activity following pertussis toxin treatment of cells, suggesting the absence of G(1) linked to inhibition of AC. Furthermore, there was no effect of adrenaline, isoprenaline or clonidine on basal or forskolin-stimulated activities, nor was there any specific binding of the beta-adrenoceptor ligand [I-125]cyanopindolol to membranes, suggesting that cate-cholamine receptors do not modulate AC activity in these membranes. Pertussis toxin-mediated ADP ribosylation of membrane proteins and Western immunoblotting analysis revealed the presence of G-protein subunits G(alpha l2), G(alpha q), G(alpha 11) and G(beta 1). In experiments designed to identify a possible effector enzyme for these G-proteins, membranes were screened with a range of antibodies raised against phospholipase C (PLC) beta, gamma and delta isozymes. Though no evidence was obtained by Western blotting for any of these proteins, PLC activity was concentration-dependently stimulated by Ca2+, but not by AlF4-, GTP[S], or purified G(beta gamma) subunits. Finally, no specific binding to membranes of the alpha(1)-adrenoceptor ligand [H-3]prazosin or the alpha(2)-adrenoceptor ligand [H-3]yohimbine was obtained. In conclusion, this study provides evidence for a G(s)-dependent stimulation of AC, and for the presence of G(2) and G(q11), which do not appear to regulate a PLC activity also identified in lymphatic smooth muscle cell membranes. Furthermore, neither AC nor PLC appear to be associated with catecholamine receptors. Copyright(C) 1996 Elsevier Science Inc.
Resumo:
Lycopene can exert antioxidant effects against peripheral and cellular oxidative stress and may be associated with reduced diabetic risk. Conversely, exercise-induced free radicals are thought to underpin many of the desirable whole-body adaptations following training and the use of antioxidants within the exercise model remains debatable. PURPOSE: To investigate the effect of lycopene supplementation on oxidative stress and glucose homeostasis following acute aerobic exercise. METHOD: Twenty-eight (n=28) apparently healthy male volunteers were recruited (age 24 ± 4 years; weight 78 ± 10 kg; height 178 ± 8 cm; 2max 40 ± 7 ml·kg-1 ·min-1 ) in a randomised, single blind, placebo-controlled study. Participants were required to attend the Laboratory on two occasions: prior to and following 6 weeks of supplementation of either 10mg lycopene (LG; n=15) or placebo (PG; n=13) followed by a bout of acute exercise for one hour at 65% 2max. Exogenous glucose oxidation was then measured on an isotope ratio mass spectrometer in a sub-group of participants (n=14) following exercise, by administration of a standard oral glucose tolerance test (OGTT; 75g glucose). Venous blood samples were drawn for measurement of oxidative stress parameters, plasma glucose and insulin. RESULTS: Plasma lycopene increased in LG only (0.01 ± 0.004 vs.0.02 ± 0.007 µmol/L; P <0.05) following supplementation and remained elevated post exercise compared to PG (0.01 ± 0.004 vs. 0.02 ± 0.009 µmol/L; P <0.05). There were no changes in other markers of oxidative stress (SOD, LOOHs, F2 ISP and Alkoxyl radical) either between or within the trials, (P >0.05, respectively). A main effect for an increase in insulin was observed two hours post OGTT in the sub-groups (Pooled data, P <0.05) but trends in the HOMA scores were evident with a 57% increase for LG (2.20 ± 1.84 vs. 5.14 ± 2.5; P >0.05) and an 11% decrease for PG (2.17 ± 1.06 vs. 1.94 ± 1.53; P >0.05). No change in plasma glucose was detected at any point, or after the OGTT (P >0.05). CONCLUSION: In healthy males, lycopene supplementation had no effect on post exercise levels of ROS or markers of lipid peroxidation, despite an increase in plasma lycopene. However, lycopene supplementation may affect post exercise insulin sensitivity in response to glucose consumption, but further parallel research is required.