770 resultados para Luttinger liquid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature-dependent electrical resistance in quasi-one-dimensional Li(0.9)Mo(6)O(17) is described by two Luttinger liquid anomalous exponents alpha, each associated with a distinct one dimensional band. The band with alpha < 1 is argued to crossover to a higher dimension below the temperature T(M'), leading to superconductivity. Disorder and magnetic fields are shown to induce the Bose metal behavior in this bulk compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge density and magnetization density profiles of one-dimensional metals are investigated by two complementary many-body methods: numerically exact (Lanczos) diagonalization, and the Bethe-Ansatz local-density approximation with and without a simple self-interaction correction. Depending on the magnetization of the system, local approximations reproduce different Fourier components of the exact Friedel oscillations. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that electron-phonon coupling strongly affects transport properties of the Luttinger liquid hybridized with a resonant level. Namely, this coupling significantly modifies the effective energy-dependent width of the resonant level in two different geometries, corresponding to the resonant or antiresonant transmission in the Fermi gas. This leads to a rich phase diagram for a metal-insulator transition induced by the hybridization with the resonant level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the influence of electron-phonon coupling on electron transport through a Luttinger liquid with an embedded weak scatterer or weak link. We derive the renormalization group (RG) equations, which indicate that the directions of RG flows can change upon varying either the relative strength of the electron-electron and electron-phonon coupling or the ratio of Fermi to sound velocities. This results in a rich phase diagram with up to three fixed points: an unstable one with a finite value of conductance and two stable ones, corresponding to an ideal metal or insulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the influence of electron-phonon coupling on electron transport through a Luttinger liquid with an embedded weak scatterer or weak link. We derive the renormalization group (RG) equations which indicate that the directions of RG flows can change upon varying either the relative strength of the electron-electron and electron-phonon coupling or the ratio of Fermi to sound velocities. This results in the rich phase diagram with up to three fixed points: an unstable one with a finite value of conductance and two stable ones, corresponding to an ideal metal or insulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study electronic transport in a Luttinger liquid with an embedded impurity, which is either a weak scatterer (WS) or a weak link (WL), when interacting electrons are coupled to one-dimensional massless bosons (e.g., acoustic phonons). We find that the duality relation, ?WS?WL=1, between scaling dimensions of the electron backscattering in the WS and WL limits, established for the standard Luttinger liquid, holds in the presence of the additional coupling for an arbitrary fixed strength of boson scattering from the impurity. This means that at low temperatures such a system remains either an ideal insulator or an ideal metal, regardless of the scattering strength. On the other hand, when fermion and boson scattering from the impurity are correlated, the system has a rich phase diagram that includes a metal-insulator transition at some intermediate values of the scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a functional integral formalism developed earlier for the pure Luttinger liquid (LL) to find an exact representation for the electron Green function of the LL in the presence of a single backscattering impurity in the low-temperature limit. This allows us to reproduce results (well known from the bosonization techniques) for the suppression of the electron local density of states (LDOS) at the position of the impurity and for the Friedel oscillations at finite temperature. In addition, we have extracted from the exact representation an analytic dependence of LDOS on the distance from the impurity and shown how it crosses over to that for the pure LL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a Luttinger liquid (LL) coupled to a generic environment consisting of bosonic modes with arbitrary density-density and current-current interactions. The LL can be either in the conducting phase and perturbed by a weak scatterer or in the insulating phase and perturbed by a weak link. The environment modes can also be scattered by the imperfection in the system with arbitrary transmission and reflection amplitudes. We present a general method of calculating correlation functions under the presence of the environment and prove the duality of exponents describing the scaling of the weak scatterer and of the weak link. This duality holds true for a broad class of models and is sensitive to neither interaction nor environmental modes details, thus it shows up as the universal property. It ensures that the environment cannot generate new stable fixed points of the renormalization group flow. Thus, the LL always flows toward either conducting or insulating phase. Phases are separated by a sharp boundary which is shifted by the influence of the environment. Our results are relevant, for example, for low-energy transport in (i) an interacting quantum wire or a carbon nanotube where the electrons are coupled to the acoustic phonons scattered by the lattice defect; (ii) a mixture of interacting fermionic and bosonic cold atoms where the bosonic modes are scattered due to an abrupt local change of the interaction; (iii) mesoscopic electric circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have devised a general scheme that reveals multiple duality relations valid for all multi-channel Luttinger Liquids. The relations are universal and should be used for establishing phase diagrams and searching for new non-trivial phases in low-dimensional strongly correlated systems. The technique developed provides universal correspondence between scaling dimensions of local perturbations in different phases. These multiple relations between scaling dimensions lead to a connection between different inter-phase boundaries on the phase diagram. The dualities, in particular, constrain phase diagram and allow predictions of emergence and observation of new phases without explicit model-dependent calculations. As an example, we demonstrate the impossibility of non-trivial phase existence for fermions coupled to phonons in one dimension. © 2013 EPLA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we investigate the effect of a BCS-type pairing term for free spinless fermions, with a propensity to form a condensate of pairs in a 1+1 dimension. Using the of bosonization technique we explore the possible condition of existence of quasiparticles in a superconducting state. Although there is no spontaneous breaking of chiral symmetry the propagator of one-particle fermion is massive and, in fact, resembles the one-particle Green s function of conventional quasiparticles

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An overview is given of the limitations of Luttinger liquid theory in describing the real time equilibrium dynamics of critical one-dimensional systems with nonlinear dispersion relation. After exposing the singularities of perturbation theory in band curvature effects that break the Lorentz invariance of the Tomonaga-Luttinger model, the origin of high frequency oscillations in the long time behaviour of correlation functions is discussed. The notion that correlations decay exponentially at finite temperature is challenged by the effects of diffusion in the density-density correlation due to umklapp scattering in lattice models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is studied using a new variant of the density matrix renormalization group. By examining various low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely and agrees with the predictions of strong coupling theory in the antiadiabatic regime and is consistent with renormalization group arguments in the adiabatic regime. The Luttinger liquid parameters, determined by finite-size scaling, are consistent with a Kosterlitz-Thouless transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An integrable Kondo problem in the one-dimensional supersymmetric t-J model is studied by means of the boundary supersymmetric quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained. (C) 1999 Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integrable Kondo impurities in the one-dimensional supersymmetric U model of strongly correlated electrons are studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local magnetic moments of the impurities are presented as non-trivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, the model Hamiltonian is diagonalized and the Bethe ansatz equations are derived. It is interesting to note that our model exhibits a free parameter in the bulk Hamiltonian but no free parameter exists on the boundaries. This is in sharp contrast to the impurity models arising from the supersymmetric t-J and extended Hubbard models where there is no free parameter in the bulk but there is a free parameter on each boundary.