216 resultados para Lumber.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voucher from the Engineer Department of Port Dalhousie and Thorold Railway Extension to John Gilleland for supplies. This is accompanied by a note about pine lumber and fencing, Apr. and May, 1857.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voucher from the Engineer Department of Port Dalhousie and Thorold Railway Extension to R. and H.H. Collier for lumber accompanied by an itemized list, May 11, 1857.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification and standardization of the sawn wood is a usual activity, developed by countries that come as great consumers of this material. Brazil does not practice the classification of sawn wood. This work had the main objective of evaluating the sensibility of most common non-destructive tests in the classification of dimension lumber from fast grown Eucalyptus plantation. Wood was obtained from genetic material cultivated at Minas Gerais State, Brazil. 296 beams of structural dimensions (6 cm × 12 cm × 280 cm) from 10 different clones of Eucalyptus were sampled. Beams were non-destructively (stress wave, ultrasound and transverse vibration) and destructively (static bending and compression parallel to grain) tested. Non-destructive results showed sensibility in the classification of structural dimension lumber, being possible to establish wave velocity intervals that attend to the main strength classes reported by Wooden Structures Brazilian Code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to analyze the behavior of the flow of heat (temperature) through the thickness of panels LVL (Laminated veneer lumber) produced with phenol formaldehyde adhesive, in laboratorial and industrial scales. Experimental program was conducted with five LVL panels (three produced in laboratorial scale and two in industrial scale) with different arrangements of a mix of commercial veneers from tropical pinus from the south region of Sao Paulo State, Brazil, bonded using phenol formaldehyde adhesive. The temperature inside the panels during the pressing process was evaluated using thermocouples type T (cooper-constantan), installed mostly in the center of the glue lines and connected to a data acquisition system. The graphics of temperature as a function of the time showed a gradual increase of temperature up to pre-set values, remaining constant from them. The temperature reached at the center of the panels was adequate to promote the curing of the adhesive. These pre-set values were similar to the minimum values presented by other authors and manufacturers of these adhesives that affirm that temperatures above 100ºC at the center of laminated panels bonded with phenolic adhesives are sufficient to ensure proper cure of the resin. The time necessary for curing of the adhesives confirmed the validity of practical expressions provided by adhesive manufacturers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grading of structural lumber besides contributing for increasing the structure's safety, due to the reduction of the material variability, also allows its rational use. Due to the good correlation between strength and bending stiffness, the latter has been used in estimating the mechanical strength of lumber pieces since the 60's. For industrial application, there are equipment and techniques to evaluate the bending stiffness of lumber, through dynamic tests such as the longitudinal vibration technique, also known as stress wave, and the transverse vibration technique. This study investigated the application of these two techniques in the assessment of the modulus of elasticity in bending of Teca beams (Tectona grandis), from reforestation, and of the tropical species Guajara (Micropholis venulosa). The modulus of elasticity estimated by dynamic tests showed good correlation with the modulus measured in the static bending test. Meantime, we observed that the accuracy of the longitudinal vibration technique was significantly reduced in the evaluation of the bending stiffness of Teca pieces due to the knots existing in this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural composite lumber (SCL) products often possess significantly higher design values than the top grades of solid lumber, making it a popular choice for both residential and commercial applications. The enhanced mechanical properties of SCL are mainly due to defect randomization and densification of the wood fiber, both largely functions of the size, shape and composition (species) of the wood element. Traditionally, SCL manufacturers have used thin, rectangular elements produced from either moderate density softwoods or low density hardwoods. Higher density hardwood species have been avoided, as they require higher pressures to adequately densify and consolidate the wood furnish. These higher pressures can lead to increased manufacturing costs, damage to the wood fiber and/or a product that is too dense, making it heavy and unreceptive to common mechanical fastening techniques. In the northeastern United States high density, diffuse-porous hardwoods (such as maple, beech and birch) are abundant. Use of these species as primary furnish for a SCL product may allow for a competitive advantage in terms of resource cost against products that rely on veneer grade logs. Proximity to this abundant and relatively inexpensive resource may facilitate entry of SCL production facilities in the northeastern United States, where currently none exist. However, modifications to current strand sizes, geometries or production techniques will likely be required to allow for use of these species. A new SCL product concept has been invented allowing for use of these high density hardwoods. The product, referred to as long-strand structural composite lumber (LSSCL), uses strands of significantly larger cross sectional areas and volumes than existing SCL products. In spite of the large strand size, satisfactory consolidation is achieved without excessive densification of the wood fiber through use of a symmetrical strand geometric cross-section. LSSCL density is similar to that of existing SCL products, but is due mainly to the inherent density of the species, rather than through densification. An experiment was designed and conducted producing LSSCL from both large (7/16”) and small (1/4”) strands, of both square and triangular geometric cross sections. Testing results indicate that the large, triangular strands produce LSSCL beams with projected design values of: Modulus of elasticity (MOEapp) – 1,750,000 psi; Allowable bending stress (Fb) – 2750 psi; Allowable shear stress (Fv) – 260 psi. Several modifications are recommended which may lead to improvement of these values, likely allowing for competition against existing SCL products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At head of title: Prepared by the Bureau of business standards of the A.W. Shaw Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"General bibliography and publishers' addresses": p. 482-493. "Periodicals": p. 499.