914 resultados para Low-pressure Urethra
Resumo:
Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.
Resumo:
Multiscale numerical modeling of the species balance and transport in the ionized gas phase and on the nanostructured solid surface complemented by the heat exchange model is used to demonstrate the possibility of minimizing the Gibbs-Thompson effect in low-temperature, low-pressure chemically active plasma-assisted growth of uniform arrays of very thin Si nanowires, impossible otherwise. It is shown that plasma-specific effects drastically shorten and decrease the dispersion of the incubation times for the nucleation of nanowires on non-uniform Au catalyst nanoparticle arrays. The fast nucleation makes it possible to avoid a common problem of small catalyst nanoparticle burying by amorphous silicon. These results explain a multitude of experimental observations on chemically active plasma-assisted Si nanowire growth and can be used for the synthesis of a range of inorganic nanowires for environmental, biomedical, energy conversion, and optoelectronic applications.
Resumo:
Current-voltage characteristics of the planar magnetron are studied experimentally and by numerical simulation. Based on the measured current-voltage characteristics, a model of the planar magnetron discharge is developed with the background gas pressure and magnetic field used as parameters. The discharge pressure was varied in a range of 0.7-1.7 Pa, the magnetic field of the magnetron was of 0.033-0.12 T near the cathode surface, the discharge current was from 1 to 25 A, and the magnetic field lines were tangential to the substrate surface in the region of the magnetron discharge ignition. The discharge model describes the motion of energetic secondary electrons that gain energy by passing the cathode sheath across the magnetic field, and the power required to sustain the plasma generation in the bulk. The plasma electrons, in turn, are accelerated in the electric field and ionize effectively the background gas species. The model is based on the assumption about the prevailing Bohm mechanism of electron conductivity across the magnetic field. A criterion of the self-sustained discharge ignition is used to establish the dependence of the discharge voltage on the discharge current. The dependence of the background gas density on the current is also observed from the experiment. The model is consistent with the experimental results. © 2010 American Institute of Physics.
Resumo:
Silicon thin films were synthesized simultaneously on single-crystal silicon and glass substrates by lowpressure, thermally nonequilibrium, high-density inductively coupled plasma-assisted chemical vapor deposition from the silane precursor gas without any additional hydrogen dilution in a broad range of substrate temperatures from 100 to 500 °C. The effect of the substrate temperature on the morphological, structural and optical properties of the synthesized silicon thin films is systematically studied by X-ray diffractometry, Raman spectroscopy, UV-vis spectroscopy, and scanning electron microscopy. It is shown that the formation of nanocrystalline silicon (nc-Si) occurs when the substrate temperature is higher than 200 °C and that all the deposited nc-Si films have a preferential growth along the (111) direction. However, the mean grain size of the (111) orientation slightly and gradually decreases while the mean grain size of the (220) orientation shows a monotonous increase with the increased substrate temperature from 200 to 500 °C. It is also found that the crystal volume fraction of the synthesized nc-Si thin films has a maximum value of ∼69.1% at a substrate temperature of 300 rather than 500 °C. This rather unexpected result is interpreted through the interplay of thermokinetic surface diffusion and hydrogen termination effects. Furthermore, we have also shown that with the increased substrate temperature from 100 to 500 °C, the optical bandgap is reduced while the growth rates tend to increase. The maximum rates of change of the optical bandgap and the growth rates occur when the substrate temperature is increased from 400 to 500 °C. These results are highly relevant to the development of photovoltaic thin-film solar cells, thin-film transistors, and flat-panel displays.
Resumo:
Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.
Resumo:
The effect of ambipolar fluxes on nanoparticle charging in a typical low-pressure parallel-plate glow discharge is considered. It is shown that the equilibrium values of the nanoparticle charge in the plasma bulk and near-electrode areas are strongly affected by the ratio S ath i of the ambipolar flux and the ion thermal velocities. Under typical experimental conditions the above ratio is neither S ath i≪ 1 nor S ath i≫1, which often renders the commonly used approximations of the purely thermal or "ion wind" ion charging currents inaccurate. By using the general approximation for the ambipolar drift-affected ion flux on the nanoparticle surface, it appears possible to obtain more accurate values of the nanoparticle charge that usually deviate within 10-25 % from the values obtained without a proper accounting for the ambipolar ion fluxes. The implications of the results obtained for glow discharge modeling and nanoparticle manipulation in low-pressure plasmas are discussed.
Resumo:
A model for electronegative plasmas containing charged dust or colloidal grains was used. Numerical solutions based on the model demonstrate how a low-pressure diffusion equilibrium of the complex electronegative plasma system is dynamically sustained through plasma particle sources.
Resumo:
The effect of density and size of dust grains on the electron energy distribution function (EEDF) in low-temperature complex plasmas is studied. It is found that the EEDF depends strongly on the dust density and size. The behavior of the electron temperature can differ significantly from that of a pristine plasma. For low-pressure argon glow discharge, the Druyvesteyn-like EEDF often found in pristine plasmas can become nearly Maxwellian if the dust density and/or sizes are large. One can thus control the plasma parameters by the dust grains.
Resumo:
$CO_2^{-}$ ions have been detected in the gas phase and measured by a mass spectrometer with a flight time of 30 µs in the positive column of carbondioxide glow discharge.
Resumo:
0:- ions have been detected and measured in a positive column of glow discharge in oxygen between 0.04 and 0.17 Torr. A suitable ion-molecule reaction has been proposed, which appears to be supported by the mass spectrometer measurements.
Resumo:
Tyrosine aminotransferase activity in the liver increased about fourfold after 9h, on exposure of rats to stress of low pressure. 2. The phenylalanine hydroxylase activity increased about 60% on exposure for 24h or more. 3. An environmental pressure decrease of about 0.033 MN/m2 is needed to increase the activity of tyrosine aminotransferase. 4. Adrenalectomy completely abolished the increase in activity of tyrosine aminotransferase obtained on exposure to low pressure. 5. Treatment with cycloheximide or actinomycin D prevented the increase in activity of tyrosine aminotransferase. 6. Treatment with cycloheximide at the early part of exposure to stress prevented the increase in activity of phenylalanine hydroxylase obtained after 24h.
Resumo:
The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.
Resumo:
A study of the deposition of aluminium oxide films by low-pressure metalorganic chemical vapour deposition from the complex aluminium acetylacetonate, in the absence of an oxidant gas, has been carried out. Depositions on to Si(100), stainless steel, and TiN-coated cemented carbide are found to be smooth, shiny, and blackish. SIMS, XPS and TEM analyses reveal that films deposited at temperatures as low as 600 degreesC contain small crystallites Of kappa-Al2O3, embedded in an amorphous matrix rich in graphitic carbon. Optical and scanning electron microscopy reveal a surface morphology made up of spherulites that suggests that film growth might involve a melting process. A nucleation and growth mechanism, involving the congruent melting clusters of precursor molecules on the hot substrate surface, is therefore invoked to explain these observations. An effort has been made experimentally to verify this proposed mechanism. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Thin films of the semiconducting, monoclinic vanadium dioxide, VO2(M) have been prepared on ordinary glass by two methods: directly by low-pressure metalorganic chemical vapor deposition (MOCVD), and by argon-annealing films of the VO2(B) phase deposited by MOCVD. The composition and microstructure of the films have been examined by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Films made predominantly of either the B or the M phase, as deposited, can only be obtained over a narrow range of deposition temperatures. At the lower end of this temperature range, the as-deposited films are strongly oriented, although the substrate is glass. This can be understood from the drive to minimize surface energy. Films of the B phase have a platelet morphology, which leads to an unusual microstructure at the lower-deposition temperatures. Those grown at similar to370 degreesC convert to the metallic, rutile (R) phase when annealed at 550 degreesC, whereas those deposited at 420 degreesC transform to the R phase only at 580 degreesC. (When cooled to room temperature, the annealed films convert reversibly from the R phase to the M phase.) Electron microscopy shows that annealing leads to disintegration of the single crystalline VO2(B) platelets into small crystallites of VO2(R), although the platelet morphology is retained. When the annealing temperature is relatively low, these crystallites are nanometer sized. At a higher-annealing temperature, the transformation leads to well-connected and similarly oriented large grains of VO2(R), enveloped in the original platelet. The semiconductor-metal transition near 68 degreesC leads to a large jump in resistivity in all the VO2(M) films, nearly as large as in epitaxial films on single-crystal substrates. When the annealed films contain well-connected large grains, the transition is very sharp. Even when preferred orientation is present, the transition is not as sharp in as-deposited VO2(M), because the crystallites are not densely packed as in annealed VO2(B). However, the high degree of orientation in these films leads to a narrow temperature hysteresis. (C) 2002 American Institute of Physics.