883 resultados para Low-Voltage Grid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the rapid development of world-wide wind energy generation using doubly fed induction generations (DFIGs), low voltage ride through (LVRT) has become a great concern. This paper focuses on a unique topology of DFIG called IG connection mode to help the DFIG ride through grid faults smoothly. Transient analysis of IG connection mode is carried out to derive the generator currents. With this analysis, the control strategy for IG connection mode DFIG was developed. From the simulation results, it is clearly visible that IG mode could work in both normal and low grid voltage conditions. Simulation results clearly show that the DFIG with the proposed mode switching control could smoothly ride through low voltage grid faults while satisfying grid code requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage drop and rise at network peak and off–peak periods along with voltage unbalance are the major power quality problems in low voltage distribution networks. Usually, the utilities try to use adjusting the transformer tap changers as a solution for the voltage drop. They also try to distribute the loads equally as a solution for network voltage unbalance problem. On the other hand, the ever increasing energy demand, along with the necessity of cost reduction and higher reliability requirements, are driving the modern power systems towards Distributed Generation (DG) units. This can be in the form of small rooftop photovoltaic cells (PV), Plug–in Electric Vehicles (PEVs) or Micro Grids (MGs). Rooftop PVs, typically with power levels ranging from 1–5 kW installed by the householders are gaining popularity due to their financial benefits for the householders. Also PEVs will be soon emerged in residential distribution networks which behave as a huge residential load when they are being charged while in their later generation, they are also expected to support the network as small DG units which transfer the energy stored in their battery into grid. Furthermore, the MG which is a cluster of loads and several DG units such as diesel generators, PVs, fuel cells and batteries are recently introduced to distribution networks. The voltage unbalance in the network can be increased due to the uncertainties in the random connection point of the PVs and PEVs to the network, their nominal capacity and time of operation. Therefore, it is of high interest to investigate the voltage unbalance in these networks as the result of MGs, PVs and PEVs integration to low voltage networks. In addition, the network might experience non–standard voltage drop due to high penetration of PEVs, being charged at night periods, or non–standard voltage rise due to high penetration of PVs and PEVs generating electricity back into the grid in the network off–peak periods. In this thesis, a voltage unbalance sensitivity analysis and stochastic evaluation is carried out for PVs installed by the householders versus their installation point, their nominal capacity and penetration level as different uncertainties. A similar analysis is carried out for PEVs penetration in the network working in two different modes: Grid to vehicle and Vehicle to grid. Furthermore, the conventional methods are discussed for improving the voltage unbalance within these networks. This is later continued by proposing new and efficient improvement methods for voltage profile improvement at network peak and off–peak periods and voltage unbalance reduction. In addition, voltage unbalance reduction is investigated for MGs and new improvement methods are proposed and applied for the MG test bed, planned to be established at Queensland University of Technology (QUT). MATLAB and PSCAD/EMTDC simulation softwares are used for verification of the analyses and the proposals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plug-in electric vehicles will soon be connected to residential distribution networks in high quantities and will add to already overburdened residential feeders. However, as battery technology improves, plug-in electric vehicles will also be able to support networks as small distributed generation units by transferring the energy stored in their battery into the grid. Even though the increase in the plug-in electric vehicle connection is gradual, their connection points and charging/discharging levels are random. Therefore, such single-phase bidirectional power flows can have an adverse effect on the voltage unbalance of a three-phase distribution network. In this article, a voltage unbalance sensitivity analysis based on charging/discharging levels and the connection point of plug-in electric vehicles in a residential low-voltage distribution network is presented. Due to the many uncertainties in plug-in electric vehicle ratings and connection points and the network load, a Monte Carlo-based stochastic analysis is developed to predict voltage unbalance in the network in the presence of plug-in electric vehicles. A failure index is introduced to demonstrate the probability of non-standard voltage unbalance in the network due to plug-in electric vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage drop at network peak hours is a significant power quality problem in Low Voltage (LV) distribution feeders. Recently, voltage rise due to high penetration of Photovoltaic cells (PVs) has been creating a new power quality problem during noon periods. In this paper, a voltage control strategy is proposed for the household installed PVs to regulate the voltage along the LV feeder. For this purpose, each PV is controlled to exchange reactive power with the grid. A droop control method is utilized to coordinate the reactive power exchange of each PV. The proposed method is a decentralized local voltage support since it is based on only local measurements and does not require any communication with other PVs. The required converter and filter structure and control algorithms are proposed to ensure the dynamic performance of the system. The study focuses on 3-phase PVs. The network is studied at network peak and off-peak periods, separately. The efficacy of the proposed voltage support concept is verified through numerical and dynamic analyses with MATLAB and PSCAD/EMTDC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to dynamically reduce voltage unbalance along a low voltage distribution feeder, a smart residential load transfer system is discussed. In this scheme, residential loads can be transferred from one phase to another to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch and a controller. The master controller, installed at the transformer, observes the power consumption in each house and will determine which house(s) should be transferred from an initially connected phase to another in order to keep the voltage unbalance minimum. The performance of the smart load transfer scheme is demonstrated by simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel intelligent online demand management system is discussed in this chapter for peak load management in low voltage residential distribution networks based on the smart grid concept. The discussed system also regulates the network voltage, balances the power in three phases and coordinates the energy storage within the network. This method uses low cost controllers, with two-way communication interfaces, installed in costumers’ premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified by a MATLAB-based simulation which includes detailed modeling of residential loads and the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brushless Doubly-Fed Induction Generator (BDFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability compared to the Doubly-Fed Induction Generator (DFIG). For the purposes of commercialisation, the BDFIG must meet grid codes at all times. Nowadays, all new wind generators have to ride through certain grid faults, and the Low-Voltage Ride Through (LVRT) capability has become one of the most important points on which to assess the performance a generator. This paper, for the first time, proposes a control scheme to enable the the BDFIG to ride through symmetrical voltage dips. Simulation results and experimental results on a prototype BDFIG show that the proposed scheme gives the capability to ride through low voltage faults. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brushless Doubly-Fed Induction Generator (Brushless DFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability when compared with the conventional Doubly-Fed Induction Generator (DFIG). In the most recent grid codes, wind generators are required to be able to ride through a low voltage fault and meet the reactive current demand from the grid. Hence, a Low-Voltage Ride-Through (LVRT) capability is important for wind generators which are integrated into the grid. In this paper the authors propose a control strategy enabling the Brushless DFIG to successfully ride through a symmetrical voltage dip. The control strategy has been implemented on a 250 kW Brushless DFIG and the experimental results indicate that LVRT is possible without a crowbar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared with the Doubly fed induction generators (DFIG), the brushless doubly fed induction generator (BDFIG) has a commercial potential for wind power generation due to its lower cost and higher reliability. In the most recent grid codes, wind generators are required to be capable of riding through low voltage faults. As a result of the negative sequence, induction generators response differently in asymmetrical voltage dips compared with the symmetrical dip. This paper gave a full behavior analysis of the BDFIG under different types of the asymmetrical fault and proposed a novel control strategy for the BDFIG to ride through asymmetrical low voltage dips without any extra hardware such as crowbars. The proposed control strategies are experimentally verified by a 250-kW BDFIG. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of smart grid technologies and appropriate charging strategies are key to accommodating large numbers of Electric Vehicles (EV) charging on the grid. In this paper a general framework is presented for formulating the EV charging optimization problem and three different charging strategies are investigated and compared from the perspective of charging fairness while taking into account power system constraints. Two strategies are based on distributed algorithms, namely, Additive Increase and Multiplicative Decrease (AIMD), and Distributed Price-Feedback (DPF), while the third is an ideal centralized solution used to benchmark performance. The algorithms are evaluated using a simulation of a typical residential low voltage distribution network with 50% EV penetration. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider charging strategies that mitigate the impact of domestic charging of EVs on low-voltage distribution networks and which seek to reduce peak power by responding to time-ofday pricing. The strategies are based on the distributed Additive Increase and Multiplicative Decrease (AIMD) charging algorithms proposed in [5]. The strategies are evaluated using simulations conducted on a custom OpenDSS-Matlab platform for a typical low voltage residential feeder network. Results show that by using AIMD based smart charging 50% EV penetration can be accommodated on our test network, compared to only 10% with uncontrolled charging, without needing to reinforce existing network infrastructure. © Springer-Verlag Berlin Heidelberg 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Distribution Network Operators (DNOs) role is becoming more difficult as electric vehicles and electric heating penetrate the network, increasing the demand. As a result it becomes harder for the distribution networks infrastructure to remain within its operating constraints. Energy storage is a potential alternative to conventional network reinforcement such as upgrading cables and transformers. The research presented here in this paper shows that due to the volatile nature of the LV network, the control approach used for energy storage has a significant impact on performance. This paper presents and compares control methodologies for energy storage where the objective is to get the greatest possible peak demand reduction across the day from a pre-specified storage device. The results presented show the benefits and detriments of specific types of control on a storage device connected to a single phase of an LV network, using aggregated demand profiles based on real smart meter data from individual homes. The research demonstrates an important relationship between how predictable an aggregation is and the best control methodology required to achieve the objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforcing the Low Voltage (LV) distribution network will become essential to ensure it remains within its operating constraints as demand on the network increases. The deployment of energy storage in the distribution network provides an alternative to conventional reinforcement. This paper presents a control methodology for energy storage to reduce peak demand in a distribution network based on day-ahead demand forecasts and historical demand data. The control methodology pre-processes the forecast data prior to a planning phase to build in resilience to the inevitable errors between the forecasted and actual demand. The algorithm uses no real time adjustment so has an economical advantage over traditional storage control algorithms. Results show that peak demand on a single phase of a feeder can be reduced even when there are differences between the forecasted and the actual demand. In particular, results are presented that demonstrate when the algorithm is applied to a large number of single phase demand aggregations that it is possible to identify which of these aggregations are the most suitable candidates for the control methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper assesses the impact of the location and configuration of Battery Energy Storage Systems (BESS) on Low-Voltage (LV) feeders. BESS are now being deployed on LV networks by Distribution Network Operators (DNOs) as an alternative to conventional reinforcement (e.g. upgrading cables and transformers) in response to increased electricity demand from new technologies such as electric vehicles. By storing energy during periods of low demand and then releasing that energy at times of high demand, the peak demand of a given LV substation on the grid can be reduced therefore mitigating or at least delaying the need for replacement and upgrade. However, existing research into this application of BESS tends to evaluate the aggregated impact of such systems at the substation level and does not systematically consider the impact of the location and configuration of BESS on the voltage profiles, losses and utilisation within a given feeder. In this paper, four configurations of BESS are considered: single-phase, unlinked three-phase, linked three-phase without storage for phase-balancing only, and linked three-phase with storage. These four configurations are then assessed based on models of two real LV networks. In each case, the impact of the BESS is systematically evaluated at every node in the LV network using Matlab linked with OpenDSS. The location and configuration of a BESS is shown to be critical when seeking the best overall network impact or when considering specific impacts on voltage, losses, or utilisation separately. Furthermore, the paper also demonstrates that phase-balancing without energy storage can provide much of the gains on unbalanced networks compared to systems with energy storage.