999 resultados para Low thermal conductivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher manganese silicide (HMS) based alloys with eutectic composition (Si-33.3 at% Mn) were prepared by arc-melting, melt-spinning and ball milling in order to evaluate the effect of microstructure on the thermal conductivity. Powder X-ray diffraction, SEM, EPMA and TEM analysis confirmed the presence of Si as a secondary phase distributed in the HMS matrix phase. Thermal properties of the samples were studied in the temperature range of 300-800 K. The microstructure refinement resulting from ball milling leads to a decrease of the thermal conductivity from 4.4 W/mK to 1.9 W/mK, whereas meltspinning is inefficient to this respect. The results show an opportunity to produce bulk higher manganese silicide alloys with reduced thermal conductivity in order to enhance its thermoelectric performance. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By combining first principles density functional theory and electronic as well as lattice Boltzmann transport calculations, we unravel the excellent thermoelectric properties of Zintl phase compounds ACd(2)Sb(2) (where, A = Ca, Ba, Sr). The calculated electronic structures of these compounds show charge carrier pockets and heavy light bands near the band edge, which lead to a large power factor. Furthermore, we report large Gruneisen parameters and low phonon group velocity indicating essential strong anharmonicity in these compounds, which resulted in low lattice thermal conductivity. The combination of low thermal conductivity and the excellent transport properties give a high ZT value of similar to 1.4-1.9 in CaCd2Sb2 and BaCd2Sb2 at moderate p and n-type doping. Our results indicate that well optimized Cd-based Zintl phase compounds have the potential to match the performance of conventional thermoelectric materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous zirconia ceramic monoliths have been extensively used in thermo-structural applications due to their inherent low thermal conductivity in combination with their adaptability to form complicated shapes through advanced ceramic processing techniques. However, extruded cellular honeycomb structures made from these materials have been less explored for thermal management applications. There exist large potential applications due to their unique configurations, resulting in better heat-management mechanisms. Some of the studies carried out on zirconia honeycombs are safeguarded through patents due to its technical importance, or the information is not in the public domain. In the present study, for the sake of comparison, honeycomb specimens with varying wall thicknesses and unit cell lengths maintaining almost same bulk density of around 90% theoretical and relative density of 0.34-0.37 were prepared and subjected to thermal conductivity evaluation along with the solid samples with relative density of 1.0 using monotonic heating regime methodology. In addition, the effect of channel shape was also evaluated using square and triangular channeled honeycombs with the same relative densities. The results obtained from these specimens were correlated with their configurations to bring out the advantages accrued by using the honeycomb with these configurations. It was observed that a significant decrease in thermal conductivity was achieved in honeycombs, which can be attributed to the behavior of various heat transfer mechanisms that are operative at high temperatures in combination with the considerable reduction in thermal mass and the consequent conduction through the solids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction Injection Moulding (RIM) is a moulding technology used for the production of large size and complex plastic parts. The RIM process is characterized essentially by the injection of a highly reactive chemical system (usually polyurethane) and fast cure, in a mould properly closed and thermally controlled. Several studies show that rapid manufacturing moulds obtained in epoxy resins for Thermoplastic Injection Moulding (TIM) affect the moulding process and the final properties of parts. The cycle time and mechanical properties of final parts are reduced, due to a low thermal conductivity of epoxy materials. In contrast, the low conductivity of materials usually applied for the rapid manufacturing of RIM moulds, increase the mechanical properties of final injected parts and reduce the cycle time. This study shows the effect of the rapid manufacturing moulds material during the RIM process. Several materials have been tested for rapid manufacturing of RIM moulds and the analysis of both, temperature profile of moulded parts during injection and the cure data experimentally obtained in a mixing and reaction cell, allow to determine and model the real effect of the mould material on the RIM process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the underlying mechanisms that suppress thermal conduction in solids is of paramount importance for the targeted design of materials for thermal management and thermoelectric energy conversion applications. Bismuth copper oxychalcogenides, BiOCuQ (Q = Se, Te), are highly crystalline thermoelectric materials with an unusually low lattice thermal conductivity of approx. 0.5 Wm-1K-1, a value normally found in amorphous materials. Here we unveil the origin of the unusual thermal transport properties of these phases. First principles calculations of the vibrational properties combined with analysis of in-situ neutron diffraction data, demonstrate that weak bonding of copper atoms within the structure leads to an unexpected vibrational mode at low frequencies, which is likely to be a major contributor to the low thermal conductivity of these materials. In addition, we show that anharmonicity and the large Grüneisen parameter in these oxychalcogenides are mainly related to the low frequency copper vibrations, rather than to the Bi3+ lone pairs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal conductivities of glasses at low temperatures show strikingly similar behavior irrespective of their chemical composition. While for T<1 K the thermal conductivity can be understood in the phenomenological tunneling model; the ‘‘universal plateau’’ in the temperature interval 15>T>2 K is totally unexplained. While Rayleigh scattering of phonons by structural disorder should be the natural cause for limiting the mean free path of phonons in this temperature range, it has been concluded before that in glasses a strong enough source of such scattering does not exist. In this study we show by a proper structural analysis in at least one material (namely, silica) that a strong enough source of Rayleigh scattering of phonons in glasses does exist so that the ‘‘universal plateau’’ can be explained without invoking any new mechanism. This may be for the first time that the low-temperature property of a structural glass has been correlated to its structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design, 3D FEM modelling and measurement results of a novel high temperature, low power SOI CMOS MEMS thermal conductivity gas sensor are presented here. The sensor consists of a circular membrane with an embedded tungsten micro-heater. The high sensing capability is based on the temperature sensitivity of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm 2. The circular membrane has a 600 μm diameter while the heating element has a 320 μm diameter. Measurement results show that for a constant power consumption of 75 mW the heater temperature was 562.4°C in air, 565.9°C in N2, 592.5°C for 1 % H2 in Ar and 599.5°C in Ar. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, a closed-form analytical model for temperature-dependent longitudinal diffusive lattice thermal conductivity (kappa) of a metallic single-walled carbon nanotube (SWCNT) has been addressed. Based on the Debye theory, the second-order three-phonon Umklapp, mass difference (MD), and boundary scatterings have been incorporated to formulate. in both low-and high-temperature regimes. It is proposed that. at low temperature (T) follows the T-3 law and is independent of the second-order three-phonon Umklapp and MD scatterings. The form factor due to MD scattering also plays a key role in the significant variation of. in addition to the SWCNT length. The present diameter-independent model of. agrees well with the available experimental data on suspended intrinsic metallic SWCNTs over a wide range of temperature and can be carried forward for electrothermal analyses of CNT-based interconnects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we address a physics-based closed-form analytical model of flexural phonon-dependent diffusive thermal conductivity (kappa) of suspended rectangular single layer graphene sheet. A quadratic dependence of the out-of-plane phonon frequency, generally called flexural phonons, on the phonon wave vector has been taken into account to analyze the behavior of kappa at lower temperatures. Such a dependence has further been used for the determination of second-order three-phonon Umklapp and isotopic scatterings. We find that these behaviors in our model are best explained through the upper limit of Debye cut-off frequency in the second-order three-phonon Umklapp scattering of the long phonon waves that actually remove the thermal conductivity singularity by contributing a constant scattering rate at low frequencies and note that the out-of-plane Gruneisen parameter for these modes need not be too high. Using this, we clearly demonstrate that. follows a T-1.5 and T-2 law at lower and higher temperatures in the absence of isotopes, respectively. However in their presence, the behavior of kappa sharply deviates from the T-2 law at higher temperatures. The present geometry-dependent model of kappa is found to possess an excellent match with various experimental data over a wide range of temperatures which can be put forward for efficient electro-thermal analyses of encased/supported graphene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the microstructure, thermal and electric conductivity properties of near-zero thermal expansion ZrW2O8/ZrO2 and Al2O3 added ZrW2O8/ZrO2 composites were studied. Both the two composites exhibit very low thermal conductivity and the thermal conductivity decreases slightly as the temperature increases. The electric conductivity of the two composites increases with the increasing of the measurement temperature. The Al2O3 added ZrW2O8/ZrO2 composite has higher thermal and electric conductivity than ZrW2O8/ZrO2 composite. The most important factor which causes the difference of the thermal and electric conductivity of the composites is the porosity. (C) 2008 The Ceramic Society of Japan. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design, FEM modelling and characterization of a novel dual mode thermal conductivity and infrared absorption sensor using SOI CMOS technology is reported. The dual mode sensing capability is based on the temperature sensitivity and wideband infrared radiation emission of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm2. Infrared detectors usually use thermopiles in addition to a separate IR source. A single highly responsive dual mode source and sensing element targeting not only low molecular mass gases but also greenhouse gases, while consuming 40 mW power at 700°C in synthetic air, thus makes this sensor particularly viable for battery powered handheld devices. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stagnant effective thermal conductivities (K0) of sugar cane bagasse (SCB), wheat bran (WB), orange pulp and peel (OPP) and their combination (weight proportion 1:2:2 SCB/OPP/WB) were obtained using the line heat source method. These solid materials were applied to pectinase production via solid-state fermentation. The moisture content ranged from 4 to 80% (w.b.). A conduction mechanism through the porous media was observed, along with conduction through a liquid film and contact thermal resistance between the samples and the probe. K0 was low for intermediate moisture contents and approached the molecular conductivity of water for high moisture contents. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los muros cortina modulares están constituidos por paneles prefabricados que se fijan al edificio a través de anclajes a lo largo del borde del forjado. El proceso de prefabricación garantiza buena calidad y control de los acabados y el proceso de instalación es rápido y no requiere andamiaje. Por estas razones su uso está muy extendido en torres. Sin embargo, el diseño de los marcos de aluminio podría ser más eficiente si se aprovechara la rigidez de los vidrios para reducir la profundidad estructural de los montantes. Asimismo, se podrían reducir los puentes térmicos en las juntas si se sustituyeran los marcos por materiales de menor conductividad térmica que el aluminio. Esta investigación persigue desarrollar un muro cortina alternativo que reduzca la profundidad estructural, reduzca la transmisión térmica en las juntas y permita un acabado enrasado al interior, sin que sobresalgan los montantes. La idea consiste en conectar un marco de material compuesto de fibra de vidrio a lo largo del borde del vidrio aislante a través de adhesivos estructurales para así movilizar una acción estructural compuesta entre los dos vidrios y lograr una baja transmitancia térmica. El marco ha de estar integrado en la profundidad del vidrio aislante. En una primera fase se han efectuado cálculos estructurales y térmicos preliminares para evaluar las prestaciones a un nivel esquemático. Además, se han realizado ensayos a flexión en materiales compuestos de fibra de vidrio y ensayos a cortante en las conexiones adhesivas entre vidrio y material compuesto. Con la información obtenida se ha seleccionado el material del marco y del adhesivo y se han efectuado cambios sobre el diseño original. Los análisis numéricos finales demuestran una reducción de la profundidad estructural de un 80% y una reducción de la transmisión térmica de un 6% en comparación con un sistema convencional tomado como referencia. El sistema propuesto permite obtener acabados enrasados. ABSTRACT Unitised curtain wall systems consist of pre manufactured cladding panels which can be fitted to the building via pre fixed brackets along the edge of the floor slab. They are universally used for high rise buildings because the factory controlled assembly of units ensures high quality and allows fast installation without external access. However, its frame is structurally over-dimensioned because it is designed to carry the full structural load, failing to take advantage of potential composite contribution of glass. Subsequently, it is unnecessarily deep, occupying valuable space, and protrudes to the inside, causing visual disruption. Moreover, it is generally made of high thermal conductivity metal alloys, contributing to substantial thermal transmission at joints. This research aims to develop a novel frame-integrated unitised curtain wall system that will reduce thermal transmission at joints, reduce structural depth significantly and allow an inside flush finish. The idea is to adhesively bond a Fibre Reinforced Polymer (FRP) frame to the edge of the Insulated Glass Unit (IGU), thereby achieving composite structural behaviour and low thermal transmittance. The frame is to fit within the glazing cavity depth. Preliminary analytical structural and numerical thermal calculations are carried out to assess the performance of an initial schematic design. 4-point bending tests on GFRP and single-lap shear tests on bonded connections between GFRP and glass are performed to inform the frame and adhesive material selection process and to characterise these materials. Based on the preliminary calculations and experimental tests, some changes are put into effect to improve the performance of the system and mitigate potential issues. Structural and thermal numerical analysis carried out on the final detail design confirm a reduction of the structural depth to almost one fifth and a reduction of thermal transmission of 6% compared to a benchmark conventional system. A flush glazed appearance both to the inside and the outside are provided while keeping the full functionality of a unitised system.