962 resultados para Low earth orbit satellites
Resumo:
Performances, design criteria, and system mass of bare tethers for satellite deorbiting missions are analyzed. Orbital conditions and tether cross section define a tether length, such that 1) shorter tethers are electron collecting practically in their whole extension and 2) longer tethers collect practically the short-circuit current in a fixed segment length. Long tethers have a higher drag efficiency (defined as the drag force vs the tether mass) and are better adapted to adverse plasma densities. Dragging efficiency and mission-related costs are used to define design criteria for tether geometry. A comparative analysis with electric thrusters shows that bare tethers have much lower costs for low- and midinclination orbits and remain an attractive option up to 70 deg.
Resumo:
Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite's Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.
Resumo:
Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite’s Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.
Resumo:
Stray light contamination reduces considerably the precision of photometric of faint stars for low altitude spaceborne observatories. When measuring faint objects, the necessity of coping with stray light contamination arises in order to avoid systematic impacts on low signal-to-noise images. Stray light contamination can be represented by a flat offset in CCD data. Mitigation techniques begin by a comprehensive study during the design phase, followed by the use of target pointing optimisation and post-processing methods. We present a code that aims at simulating the stray-light contamination in low-Earth orbit coming from reflexion of solar light by the Earth. StrAy Light SimulAtor (SALSA) is a tool intended to be used at an early stage as a tool to evaluate the effective visible region in the sky and, therefore to optimise the observation sequence. SALSA can compute Earth stray light contamination for significant periods of time allowing missionwide parameters to be optimised (e.g. impose constraints on the point source transmission function (PST) and/or on the altitude of the satellite). It can also be used to study the behaviour of the stray light at different seasons or latitudes. Given the position of the satellite with respect to the Earth and the Sun, SALSA computes the stray light at the entrance of the telescope following a geometrical technique. After characterising the illuminated region of the Earth, the portion of illuminated Earth that affects the satellite is calculated. Then, the flux of reflected solar photons is evaluated at the entrance of the telescope. Using the PST of the instrument, the final stray light contamination at the detector is calculated. The analysis tools include time series analysis of the contamination, evaluation of the sky coverage and an objects visibility predictor. Effects of the South Atlantic Anomaly and of any shutdown periods of the instrument can be added. Several designs or mission concepts can be easily tested and compared. The code is not thought as a stand-alone mission designer. Its mandatory inputs are a time series describing the trajectory of the satellite and the characteristics of the instrument. This software suite has been applied to the design and analysis of CHEOPS (CHaracterizing ExOPlanet Satellite). This mission requires very high precision photometry to detect very shallow transits of exoplanets. Different altitudes and characteristics of the detector have been studied in order to find the best parameters, that reduce the effect of contamination. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Debido al reciente incremento de conflictos en el mundo árabe y dado el interés nacional de España en dicha zona, se propone en este proyecto un estudio inicial para el diseño y desarrollo de un microsatélite que ayude al gobierno de España a mantener esa zona bajo observación constante. En el presente trabajo se abarcan todos los subsistemas del satélite, haciéndose un estudio más detallado del subsistema de potencia
Resumo:
Este documento contiene el proceso de prediseño y cálculo de un satélite de observación terrestre mediante imágenes fotográficas. El principal objetivo del proyecto es el diseño detallado del subsistema de potencia del satélite y a validación de un modelo de funcionamiento del sistema de potencia de las placas solares que alimentan al mismo y mediante la herramienta Simulink. La primera parte consiste en un diseño breve de los subsistemas y parámetros más importantes del satélite tales como el Sistema de Control de Actitud, Sistema de Control Térmico y Sistema de Comunicaciones, además de la estructura del satélite, la órbita en la que se encontrará, el lanzador que se usará para situarlo en órbita y la cámara que llevara a bordo para la captación de imágenes. La segunda parte trata del diseño del subsistema de potencia de una manera más detallada y de su simulación mediante una herramienta diseñada en el programa MATLAB con la herramienta Simulink. Se pretende usar la herramienta para simular el comportamiento del subsistema de potencia de un satélite conocido que será el UPMSat-2.
Resumo:
Este proyecto consiste en el estudio y dimensionado inicial del sistema de potencia de un satélite de observación, que sirva de ayuda a otros sistemas de mayor precisión a la hora de detectar posibles terremotos y actividad volcánica mediante el análisis de señales electromagnéticas presentes en la ionosfera. Para ello el satélite incorpora, entre otros elementos sensores eléctricos, un analizador de plasma, y un detector de partículas. Con esta instrumentación se pretenden detectar los cambios que se producen en el campo electromagnético terrestre como consecuencia del movimiento de las placas tectónicas, y descubrir así las posibles anomalías que preceden a un seísmo. Para no sobrepasar el presupuesto con el que se ha ideado el proyecto se utilizarán sistemas que permitan la lectura de datos de la forma más simple, pudiendo ocurrir que los datos recogidos no se transmitan al control de Tierra en tiempo real, impidiendo a los científicos analizar los datos recogidos hasta unos días después, de ahí que este satélite experimental deba emplearse, en principio, como apoyo a programas de detención de terremotos más sofisticados y con mayores medios técnicos. Evidentemente, con este sistema también se podrán recoger datos tras los seísmos y examinarlos posteriormente. La órbita del satélite será una órbita LEO (Low Earth Orbit) de una altitud aproximada de 670 Km, estimándose el tiempo de vida del satélite en 5 años. Intentando emplear la mayor parte de los recursos económicos en el equipamiento científico, la estructura será la más simple posible, esto es, un paralelepípedo de dimensiones compactas con un peso aproximado de 185 kg, contando con paneles solares desplegables y en su interior con baterías que proporcionarán potencia al satélite durante la fase de lanzamiento y en momentos concretos.
Resumo:
Las principal conclusión que se puede obtener tras el estudio es que el satélite, tal y como se ha tenido en cuenta, es perfectamente funcional desde el punto de vista eléctrico. Por la parte de la generación de potencia, los paneles son capaces de ofreces una cantidad tal como para que aproximadamente la mitad (en el caso de funcionamiento normal) de esta potencia sea destinada a la carga útil. Además, incluso en los modos de fallo definidos, el valor de potencia dedicada a la carga útil, es suficientemente alta como para que merezca la pena mantener el satélite operativo. Respecto de las baterías, se puede observar por su comportamiento que están, sobredimensionadas y por ello actúan como un elemento regulador del sistema completo, ya que tiene un amplio margen de trabajo por el cual se puede modificar el funcionamiento general. Y esto se demuestra no sólo en cuanto al estado de carga, que para el perfil de consumo constante y el de cuatro pulsos de 120 W por día se mantiene siempre por encima del 99%, si no también en términos de charging rate, el cual se está siempre dentro de los límites establecidos por el fabricante, asegurando una vida operativa acorde con la nominal. Por último, sobre el propio método de simulación se puede extraer que aun no siendo la mejor plataforma donde estudiar estos comportamientos. Presenta el inconveniente de que, en ciertas partes, restringe la flexibilidad a la hora de cambiar múltiples condiciones al mismo tiempo, pero a cambio permite un estudio bastante amplio con un requisito de conocimientos y de complejidad bajo, de manera que habilita a cualquier estudiante a llevar a cabo estudios similares.
Resumo:
This paper presents a high-accuracy fully analytical formulation to compute the miss distance and collision probability of two approaching objects following an impulsive collision avoidance maneuver. The formulation hinges on a linear relation between the applied impulse and the objects? relative motion in the b-plane, which allows one to formulate the maneuver optimization problem as an eigenvalue problem coupled to a simple nonlinear algebraic equation. The optimization criterion consists of minimizing the maneuver cost in terms of delta-V magnitude to either maximize collision miss distance or to minimize Gaussian collision probability. The algorithm, whose accuracy is verified in representative mission scenarios, can be employed for collision avoidance maneuver planning with reduced computational cost when compared with fully numerical algorithms.
Resumo:
A new material, C12A7 : electride, which might present a work function as low as 0.6 eV and moderately high temperature stability, was recently proposed as coating for floating bare tethers. Arising from heating under space operation, current is emitted by thermionic emission along a thus coated cathodic segment. A preliminary study on the space-charge-limited (SCL) double layer in front of the cathodic segment is presented using Langmuir’s SCL electron current between cylindrical electrodes and orbital-motion-limited ion-collection sheath. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects and the transition from SCL to full Richardson-Dushman emission included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission leads to a short cathodic section and may eliminate the need for an active cathodic device and its corresponding gas feed requirements and power subsystem, which results in a truly “propellant-less” tether system for such basic applications as de-orbiting low earth orbit satellites.
Resumo:
The strong trend toward nanosatellites creates new challenges in terms of thermal balance control. The thermal balance of a satellite is determined by the heat dissipation in its subsystems and by the thermal connections between them. As satellites become smaller, heat dissipation in their subsystems tends to decrease and thermal connectivity scales down with dimension. However, these two terms do not necessarily scale in the same way, and so the thermal balance may alter and the temperature of subsystems may reach undesired levels. This paper focuses on low-Earth-orbit satellites. We constructed a generalized lumped thermal model that combines a generalized low-Earth-orbit satellite configuration with scaling trends in subsystem heat dissipation and thermal connectivity. Using satellite mass as a scaling parameter, we show that subsystems do not become thermally critical by scaling mass alone.
Resumo:
Spacecraft move with high speeds and suffer abrupt changes in acceleration. So, an onboard GPS receiver could calculate navigation solutions if the Doppler effect is taken into consideration during the satellite signals acquisition and tracking. Thus, for the receiver subject to such dynamic cope these shifts in the frequency signal, resulting from this effect, it is imperative to adjust its acquisition bandwidth and increase its tracking loop to a higher order. This paper presents the changes in the GPS Orion s software, an open architecture receiver produced by GEC Plessey Semiconductors, nowadays Zarlink, in order to make it able to generate navigation fix for vehicle under high dynamics, especially Low Earth Orbit satellites. GPS Architect development system, sold by the same company, supported the modifications. Furthermore, it presents GPS Monitor Aerospace s characteristics, a computational tool developed for monitoring navigation fix calculated by the GPS receiver, through graphics. Although it was not possible to simulate the software modifications implemented in the receiver in high dynamics, it was observed that the receiver worked in stationary tests, verified also in the new interface. This work also presents the results of GPS Receiver for Aerospace Applications experiment, achieved with the receiver s participation in a suborbital mission, Operation Maracati 2, in December 2010, using a digital second order carrier tracking loop. Despite an incident moments before the launch have hindered the effective navigation of the receiver, it was observed that the experiment worked properly, acquiring new satellites and tracking them during the VSB-30 rocket flight.