962 resultados para Low cycle fatigue


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 degrees C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Delta epsilon/2) when Delta epsilon/2 <= 0.6%. At Delta epsilon/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 degrees C. At 400 degrees C, however, cyclic stress plateaued after initial hardening. Dislocation-dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin-Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Delta epsilon/2 at 650 degrees C suggests the role of twinning in homogenization of cyclic deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain-rate effects on the low-cycle fatigue (LCF) behavior of a NIMONIC PE-16 superalloy have been evaluated in the temperature range of 523 to 923 K. Total-strain-controlled fatigue tests were per-formed at a strain amplitude of +/-0.6 pct on samples possessing two different prior microstructures: microstructure A, in the solution-annealed condition (free of gamma' and carbides); and microstructure B, in a double-aged condition with gamma' of 18-nm diameter and M23C6 carbides. The cyclic stress response behavior of the alloy was found to depend on the prior microstructure, testing temperature, and strain rate. A softening regime was found to be associated with shearing of ordered gamma' that were either formed during testing or present in the prior microstructure. Various manifestations of dynamic strain aging (DSA) included negative strain rate-stress response, serrations on the stress-strain hysteresis loops, and increased work-hardening rate. The calculated activation energy matched well with that for self-diffusion of Al and Ti in the matrix. Fatigue life increased with an increase in strain rate from 3 x 10(-5) to 3 x 10(-3) s-1, but decreased with further increases in strain rate. At 723 and 823 K and low strain rates, DSA influenced the deformation and fracture behavior of the alloy. Dynamic strain aging increased the strain localization in planar slip bands, and impingement of these bands caused internal grain-boundary cracks and reduced fatigue life. However, at 923 K and low strain rates, fatigue crack initiation and propagation were accelerated by high-temperature oxidation, and the reduced fatigue life was attributed to oxidation-fatigue interaction. Fatigue life was maximum at the intermediate strain rates, where strain localization was lower. Strain localization as a function of strain rate and temperature was quantified by optical and scanning electron microscopy and correlated with fatigue life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain controlled low cycle fatigue tests on solution annealed nitrogen modified 316L stainless steel have been conducted in air at 823 K to ascertain the influence of strain rate and strain amplitude. Effect of strain rate was examined from 3x10(-5) s(-1) to 3 x 10(-2) at a fixed strain amplitude of +/- 0.6%. The influence of strain amplitude was evaluated between +/- 0.25 % and +/- 1.0% at a constant strain rate of 3x10(-3) s(-1). The cyclic stress response at all testing conditions is characterized by an initial hardening followed by saturation. Serrated flow, a characteristic feature of dynamic strain ageing (DSA) was seen at strain rates lower than 3x10(-3) s(-1). Fatigue life was found to decrease with decrease in strain rate. The reduction in fatigue resistance is attributed mainly to the detrimental effects associated with DSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low cycle fatigue behavior of an O+B2 alloy was evaluated at 650 degrees C in ambient atmosphere under fully reversed total axial strain controlled mode. Three different microstructures, namely equiaxed O plus aged B2 (fine O plates in B2 matrix), lenticular O laths plus aged B2 and a pancake composite microstructure comprising equiaxed alpha 2, lenticular O and aged B2, were selected to study the effect of microstructure on low cycle fatigue behavior in this class of alloys. Distinct well-defined trends were observed in the cyclic stress-strain response curves depending on the microstructure. The cyclic stress response was examined in terms of softening or hardening and correlated with microstructural features and dislocation behavior. Fatigue life was analyzed in terms of standard Coffin-Manson and Basquin plots and for all microstructures a prevailing elastic strain regime was identified, with a single slope for microstructures equiaxed and composite and a double slope for lenticular O laths. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the process of room-temperature low cycle fatigue, the China Low Activation Martensitic steel exhibits at the beginning cyclic hardening and then continuous cyclic softening. The grain size decreased and the martensitic lath transformed to cells/subgrains after the tests. The subgrains increase in size with increasing strain amplitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

China Low Activation Martensitic (CLAM) steel is considered to be the main candidate material for the first wall components of future fusion reactors in China. In this paper, the low cycle fatigue (LCF) behavior of CLAM steel is studied under fully reversed tension–compression loading at 823 K in air. Total strain amplitude was controlled from 0.14% to 1.8% with a constant strain rate of 2.4×10−3 s−1. The corresponding plastic strain amplitude ranged from 0.023% to 1.613%. The CLAM steel displayed continuous softening to failure at 823 K. The relationship between strain, stress and fatigue life was obtained using the parameters obtained from fatigue tests. The LCF properties of CLAM steel at 823 K followed Coffin–Manson relationship. Furthermore, irregular serration was observed on the stress–strain hysteresis loops of CLAM steel tested with the total strain amplitude of 0.45–1.8%, which was attributed to the dynamic strain aging (DSA) effect. During continuous cyclic deformation, the microstructure and precipitate distribution of CLAM steel changed gradually. Many tempered martensitic laths were decomposed into subgrains, and the size and number of M23C6 carbide and MX carbonitride precipitates decreased with the increase of total strain amplitude. The response cyclic stress promoted the recovery of martensitic lath, while the thermal activation mainly played an important role on the growth of precipitates in CLAM steel at 823 K. In order to have a better understanding of high-temperature LCF behavior, the potential mechanisms controlling stress–strain response, DSA phenomenon and microstructure changes have also been evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) properties and the fracture behavior of China Low Activation Martensitic (CLAM) steel have been studied over a range of total strain amplitudes from 0.2 to 2.0%. The specimens were cycled using tension-compression loading under total strain amplitude control. The CLAM steel displayed initial hardening followed by continuous softening to failure at room temperature in air. The relationship between strain and fatigue life was predicted using the parameters obtained from fatigue test. The factors effecting on low cycle fatigue of CLAM steel consisted of initial state of matrix dislocation arrangement, magnitude of cyclic stress, magnitude of total strain amplitude and microstructure. The potential mechanisms controlling the stress response, cyclic strain resistance and low cycle fatigue life have been evaluated.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scope of this study was to examine the effects of plane strain prestrain, induced via cold-rolling, and subsequent automotive paint bake hardening cycle on both tensile and fatigue properties of a hot rolled TRIP780 multiphase steel. Strain-life data has been generated for as-received (0% prestrain), 10% and 20% prestrained samples, in both baked and unbaked conditions. Cold rolling  increased the number of strain reversals to failure at high cyclic strain amplitudes with no effect at low strain amplitudes. Bake hardening increased the number of reversals to failure at high cyclic strain amplitudes. The prestrained material exhibited partial cyclic softening, with some residual strength increase. The residual strength increase was attributed to the austenite to martensite transformation that occurred during the prestraining process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) behaviour of several commercially-produced multiphase steels was studied; including dual-phase (DP) and transformation induced plasticity (TRIP). In addition, a novel TRIP980 hybrid microstructure was examined that consisted of coarse ferrite grains along with low temperature bainite regions interspersed with retained austenite. Fully reversed strain controlled fatigue tests were conducted on the different steels to determine the cyclic stress response and strain to failure. The effects of the cyclic deformation on the microstructures were analysed using electron backscattered diffraction (EBSD) and X-ray diffraction (XRD). Results showed that the initial cyclic hardening behaviour and low cyclic softening ratio observed in the TRIP steels was not necessarily due to austenite to martensite transformation. Differences between the austenite transformation behaviour of the conventional and novel hybrid TRIP microstructures was related to the different surrounding phases and the size of the retained austenite.