970 resultados para Lot-sizing
Resumo:
This report describes the full research proposal for the project \Balancing and lot-sizing mixed-model lines in the footwear industry", to be developed as part of the master program in Engenharia Electrotécnica e de Computadores - Sistemas de Planeamento Industrial of the Instituto Superior de Engenharia do Porto. The Portuguese footwear industry is undergoing a period of great development and innovation. The numbers speak for themselves, Portugal footwear exported 71 million pairs of shoes to over 130 countries in 2012. It is a diverse sector, which covers different categories of women, men and children shoes, each of them with various models. New and technologically advanced mixed-model assembly lines are being projected and installed to replace traditional mass assembly lines. Obviously there is a need to manage them conveniently and to improve their operations. This work focuses on balancing and lot-sizing stitching mixed-model lines in a real world environment. For that purpose it will be fundamental to develop and evaluate adequate effective solution methods. Different objectives may be considered, which are relevant for the companies, such as minimizing the number of workstations, and minimizing the makespan, while taking into account a lot of practical restrictions. The solution approaches will be based on approximate methods, namely by resorting to metaheuristics. To show the impact of having different lots in production the initial maximum amount for each lot is changed and a Tabu Search based procedure is used to improve the solutions. The developed approaches will be evaluated and tested. A special attention will be given to the solution of real applied problems. Future work may include the study of other neighbourhood structures related to Tabu Search and the development of ways to speed up the evaluation of neighbours, as well as improving the balancing solution method.
Resumo:
This paper addresses the independent multi-plant, multi-period, and multi-item capacitated lot sizing problem where transfers between the plants are allowed. This is an NP-hard combinatorial optimization problem and few solution methods have been proposed to solve it. We develop a GRASP (Greedy Randomized Adaptive Search Procedure) heuristic as well as a path-relinking intensification procedure to find cost-effective solutions for this problem. In addition, the proposed heuristics is used to solve some instances of the capacitated lot sizing problem with parallel machines. The results of the computational tests show that the proposed heuristics outperform other heuristics previously described in the literature. The results are confirmed by statistical tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Foundries can be found all over Brazil and they are very important to its economy. In 2008, a mixed integer-programming model for small market-driven foundries was published, attempting to minimize delivery delays. We undertook a study of that model. Here, we present a new approach based on the decomposition of the problem into two sub-problems: production planning of alloys and production planning of items. Both sub-problems are solved using a Lagrangian heuristic based on transferences. An important aspect of the proposed heuristic is its ability to take into account a secondary practice objective solution: the furnace waste. Computational tests show that the approach proposed here is able to generate good quality solutions that outperform prior results. Journal of the Operational Research Society (2010) 61, 108-114. doi:10.1057/jors.2008.151
Resumo:
Industrial production processes involving both lot-sizing and cutting stock problems are common in many industrial settings. However, they are usually treated in a separate way, which could lead to costly production plans. In this paper, a coupled mathematical model is formulated and a heuristic method based on Lagrangian relaxation is proposed. Computational results prove its effectiveness. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (I the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry`s own practice. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho estuda-se um problema de dimensionamento de lotes e distribuição que envolve além de custos de estoques, produção e preparação, custos de transportes para o armazém da empresa. Os custos logísticos estão associados aos contêineres necessários para empacotar os produtos produzidos. A empresa negocia um contrato de longo prazo onde um custo fixo por período é associado ao transporte dos itens, em contrapartida um limite de contêineres é disponibilizado com custo mais baixo que o custo padrão. Caso ocorra um aumento ocasional de demanda, novos contêineres podem ser utilizados, no entanto, seu custo é mais elevado. Um modelo matemático foi proposto na literatura e resolvido utilizando uma heurística Lagrangiana. No presente trabalho a resolução do problema por uma heurística Lagrangiana/surrogate é avaliada. Além disso, é considerada uma extensão do modelo da literatura adicionando restrições de capacidade e permitindo atraso no atendimento a demanda. Testes computacionais mostraram que a heurística Lagrangiana/surrogate é competitiva especialmente quando se têm restrições de capacidade apertada.
Resumo:
A lot sizing and scheduling problem from a foundry is considered in which key materials are produced and then transformed into many products on a single machine. A mixed integer programming (MIP) model is developed, taking into account sequence-dependent setup costs and times, and then adapted for rolling horizon use. A relax-and-fix (RF) solution heuristic is proposed and computationally tested against a high-performance MIP solver. Three variants of local search are also developed to improve the RF method and tested. Finally the solutions are compared with those currently practiced at the foundry.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry's own practice. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
This chapter studies a two-level production planning problem where, on each level, a lot sizing and scheduling problem with parallel machines, capacity constraints and sequence-dependent setup costs and times must be solved. The problem can be found in soft drink companies where the production process involves two interdependent levels with decisions concerning raw material storage and soft drink bottling. Models and solution approaches proposed so far are surveyed and conceptually compared. Two different approaches have been selected to perform a series of computational comparisons: an evolutionary technique comprising a genetic algorithm and its memetic version, and a decomposition and relaxation approach. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper studies the use of different population structures in a Genetic Algorithm (GA) applied to lot sizing and scheduling problems. The population approaches are divided into two types: single-population and multi-population. The first type has a non-structured single population. The multi-population type presents non-structured and structured populations organized in binary and ternary trees. Each population approach is tested on lot sizing and scheduling problems found in soft drink companies. These problems have two interdependent levels with decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously determine the lot sizing and scheduling of raw materials in tanks and products in lines. Computational results are reported allowing determining the better population structure for the set of problem instances evaluated. Copyright 2008 ACM.
Resumo:
This paper proposes a tabu search approach to solve the Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem (SITLSP). It is a real-world problem, often found in soft drink companies, where the production process has two integrated levels with decisions concerning raw material storage and soft drink bottling. Lot sizing and scheduling of raw materials in tanks and products in bottling lines must be simultaneously determined. Real data provided by a soft drink company is used to make comparisons with a previous genetic algorithm. Computational results have demonstrated that tabu search outperformed genetic algorithm in all instances. Copyright 2011 ACM.