951 resultados para Lossy compression


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bloom filters are a data structure for storing data in a compressed form. They offer excellent space and time efficiency at the cost of some loss of accuracy (so-called lossy compression). This work presents a yes-no Bloom filter, which as a data structure consisting of two parts: the yes-filter which is a standard Bloom filter and the no-filter which is another Bloom filter whose purpose is to represent those objects that were recognised incorrectly by the yes-filter (that is, to recognise the false positives of the yes-filter). By querying the no-filter after an object has been recognised by the yes-filter, we get a chance of rejecting it, which improves the accuracy of data recognition in comparison with the standard Bloom filter of the same total length. A further increase in accuracy is possible if one chooses objects to include in the no-filter so that the no-filter recognises as many as possible false positives but no true positives, thus producing the most accurate yes-no Bloom filter among all yes-no Bloom filters. This paper studies how optimization techniques can be used to maximize the number of false positives recognised by the no-filter, with the constraint being that it should recognise no true positives. To achieve this aim, an Integer Linear Program (ILP) is proposed for the optimal selection of false positives. In practice the problem size is normally large leading to intractable optimal solution. Considering the similarity of the ILP with the Multidimensional Knapsack Problem, an Approximate Dynamic Programming (ADP) model is developed making use of a reduced ILP for the value function approximation. Numerical results show the ADP model works best comparing with a number of heuristics as well as the CPLEX built-in solver (B&B), and this is what can be recommended for use in yes-no Bloom filters. In a wider context of the study of lossy compression algorithms, our researchis an example showing how the arsenal of optimization methods can be applied to improving the accuracy of compressed data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes an audio watermarking scheme based on lossy compression. The main idea is taken from an image watermarking approach where the JPEG compression algorithm is used to determine where and how the mark should be placed. Similarly, in the audio scheme suggested in this paper, an MPEG 1 Layer 3 algorithm is chosen for compression to determine the position of the mark bits and, thus, the psychoacoustic masking of the MPEG 1 Layer 3compression is implicitly used. This methodology provides with a high robustness degree against compression attacks. The suggested scheme is also shown to succeed against most of the StirMark benchmark attacks for audio.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vaatimus kuvatiedon tiivistämisestä on tullut entistä ilmeisemmäksi viimeisen kymmenen vuoden aikana kuvatietoon perustuvien sovellutusten myötä. Nykyisin kiinnitetään erityistä huomiota spektrikuviin, joiden tallettaminen ja siirto vaativat runsaasti levytilaa ja kaistaa. Aallokemuunnos on osoittautunut hyväksi ratkaisuksi häviöllisessä tiedontiivistämisessä. Sen toteutus alikaistakoodauksessa perustuu aallokesuodattimiin ja ongelmana on sopivan aallokesuodattimen valinta erilaisille tiivistettäville kuville. Tässä työssä esitetään katsaus tiivistysmenetelmiin, jotka perustuvat aallokemuunnokseen. Ortogonaalisten suodattimien määritys parametrisoimalla on työn painopisteenä. Työssä todetaan myös kahden erilaisen lähestymistavan samanlaisuus algebrallisten yhtälöiden avulla. Kokeellinen osa sisältää joukon testejä, joilla perustellaan parametrisoinnin tarvetta. Erilaisille kuville tarvitaan erilaisia suodattimia sekä erilaiset tiivistyskertoimet saavutetaan eri suodattimilla. Lopuksi toteutetaan spektrikuvien tiivistys aallokemuunnoksen avulla.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this thesis is to present a new approach to the lossy compression of multispectral images. Proposed algorithm is based on combination of quantization and clustering. Clustering was investigated for compression of the spatial dimension and the vector quantization was applied for spectral dimension compression. Presenting algo¬rithms proposes to compress multispectral images in two stages. During the first stage we define the classes' etalons, another words to each uniform areas are located inside the image the number of class is given. And if there are the pixels are not yet assigned to some of the clusters then it doing during the second; pass and assign to the closest eta¬lons. Finally a compressed image is represented with a flat index image pointing to a codebook with etalons. The decompression stage is instant too. The proposed method described in this paper has been tested on different satellite multispectral images from different resources. The numerical results and illustrative examples of the method are represented too.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thesis explores the area of still image compression. The image compression techniques can be broadly classified into lossless and lossy compression. The most common lossy compression techniques are based on Transform coding, Vector Quantization and Fractals. Transform coding is the simplest of the above and generally employs reversible transforms like, DCT, DWT, etc. Mapped Real Transform (MRT) is an evolving integer transform, based on real additions alone. The present research work aims at developing new image compression techniques based on MRT. Most of the transform coding techniques employ fixed block size image segmentation, usually 8×8. Hence, a fixed block size transform coding is implemented using MRT and the merits and demerits are analyzed for both 8×8 and 4×4 blocks. The N2 unique MRT coefficients, for each block, are computed using templates. Considering the merits and demerits of fixed block size transform coding techniques, a hybrid form of these techniques is implemented to improve the performance of compression. The performance of the hybrid coder is found to be better compared to the fixed block size coders. Thus, if the block size is made adaptive, the performance can be further improved. In adaptive block size coding, the block size may vary from the size of the image to 2×2. Hence, the computation of MRT using templates is impractical due to memory requirements. So, an adaptive transform coder based on Unique MRT (UMRT), a compact form of MRT, is implemented to get better performance in terms of PSNR and HVS The suitability of MRT in vector quantization of images is then experimented. The UMRT based Classified Vector Quantization (CVQ) is implemented subsequently. The edges in the images are identified and classified by employing a UMRT based criteria. Based on the above experiments, a new technique named “MRT based Adaptive Transform Coder with Classified Vector Quantization (MATC-CVQ)”is developed. Its performance is evaluated and compared against existing techniques. A comparison with standard JPEG & the well-known Shapiro’s Embedded Zero-tree Wavelet (EZW) is done and found that the proposed technique gives better performance for majority of images

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Programa de doctorado: Ingeniería de Telecomunicación Avanzada

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment but usually the huge amount of 3D information is unmanageable by the robot storage and computing capabilities. A data compression is necessary to store and manage this information but preserving as much information as possible. In this paper, we propose a 3D lossy compression system based on plane extraction which represent the points of each scene plane as a Delaunay triangulation and a set of points/area information. The compression system can be customized to achieve different data compression or accuracy ratios. It also supports a color segmentation stage to preserve original scene color information and provides a realistic scene reconstruction. The design of the method provides a fast scene reconstruction useful for further visualization or processing tasks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compression where either near-lossless or lossless coding is required. In this dissertation, two different approaches to improve lossless coding of volumetric medical images, such as Magnetic Resonance and Computed Tomography, were studied and implemented using the latest standard High Efficiency Video Encoder (HEVC). In a first approach, the use of geometric transformations to perform inter-slice prediction was investigated. For the second approach, a pixel-wise prediction technique, based on Least-Squares prediction, that exploits inter-slice redundancy was proposed to extend the current HEVC lossless tools. Experimental results show a bitrate reduction between 45% and 49%, when compared with DICOM recommended encoders, and 13.7% when compared with standard HEVC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. Although digital and videotaped images are known to be comparable for the evaluation of left ventricular function, their relative accuracy for assessment of more complex anatomy is unclear. We sought to compare reading time, storage costs, and concordance of video and digital interpretations across multiple observers and sites. Methods. One hundred one patients with valvular (90 mitral, 48 aortic, 80 tricuspid) disease were selected prospectively, and studies were stored according to video and standardized digital protocols. The same reviewer interpreted video and digital images independently and at different times with the use of a standard report form to evaluate 40 items (eg, severity of stenosis or regurgitation, leaflet thickening, and calcification) as normal or mildly, moderately, or severely abnormal Concordance between modalities was expressed at kappa Major discordance (difference of >1 level of severity) was ascribed to the modality that gave the lesser severity. CD-ROM was used to store digital data (20:1 lossy compression), and super-VHS video-tape was used to store video data The reading time and storage costs for each modality were compared Results. Measured parameters were highly concordant (ejection fraction was 52% +/- 13% by both). Major discordance was rare, and lesser values were reported with digital rather than video interpretation in the categories of aortic and mitral valve thicken ing (1% to 2%) and severity of mitral regurgitation (2%). Digital reading time was 6.8 +/- 2.4 minutes, 38% shorter than with video (11.0 +/- 3.0, range 8 to 22 minutes, P < .001). Compressed digital studies had an average size of 60 <plus/minus> 14 megabytes (range 26 to 96 megabytes). Storage cost for video was A$0.62 per patient (18 studies per tape, total cost A$11.20), compared with A$0.31 per patient for digital storage (8 studies per CD-ROM, total cost A$2.50). Conclusion. Digital and video interpretation were highly concordant; in the few cases of major discordance, the digital scores were lower, perhaps reflecting undersampling. Use of additional views and longer clips may be indicated to minimize discordance with video in patients with complex problems. Digital interpretation offers a significant reduction in reading times and the cost of archiving.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

JPEG 2000 és un estàndard de compressió d'imatges que utilitza tècniques estat de l’art basades en la transformada wavelet. Els principals avantatges són la millor compressió, la possibilitat d’operar amb dades comprimides i que es pot comprimir amb i sense pèrdua amb el mateix mètode. BOI és la implementació de JPEG 2000 del Grup de Compressió Interactiva d’Imatges del departament d’Enginyeria de la Informació i les Comunicacions, pensada per entendre, criticar i millorar les tecnologies de JPEG 2000. La nova versió intenta arribar a tots els extrems de l’estàndard on la versió anterior no va arribar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Der technische Fortschritt konfrontiert die medizinische Bildgebung wie keine andere Sparte der Medizin mit einem rasanten Anstieg zu speichernder Daten. Anschaffung, Wartung und Ausbau der nötigen Infrastruktur entwickeln sich zunehmend zu einem ökonomischen Faktor. Ein Verfahren, welches diesem Trend etwas entgegensetzten könnte ist die irreversible Bilddatenkompression. Sie ist seit über 10 Jahren Gegenstand vieler Studien, deren Ergebnisse sich wiederum in Empfehlungen zum Einsatz irreversibler Kompression mehrerer nationaler und internationaler Organisation, wie CAR, DRG, RCR und ESR wiederspiegeln. Tenor dieser Empfehlungen ist, dass der Einsatz von moderater irreversibler Bilddatenkompression sicher und sinnvoll ist. Teil dieser Empfehlungen sind auch Angaben über das Maß an Kompression, ausgedrückt in Kompressionsraten, welche je nach Untersuchung und anatomischer Region als sicher anwendbar gelten und keinen diagnostisch relevanten Verlust der komprimierten Bilder erzeugen.rnVerschiedene Kompressionsalgorithmen wurden vorgeschlagen. Letztendlich haben sich vor allem die beiden weit verbreiteten Algorithmen JPEG und JPEG2000 bewährt. Letzterer erfährt in letzter Zeit zunehmen Anwendung, aufgrund seiner einfacheren Handhabung und seiner umfangreichen Zusatzfunktionen.rnAufgrund rechtlich-ethischer Bedenken hat die irreversible Kompression keine breite praktische Anwendung finden können. Dafür verantwortlich ist unter anderem auch die Unklarheit, wie sich irreversible Kompression auf Nach- und Weiterverarbeitung (sog. Postprocessing) medizinischer Bilder, wie Segmentierung, Volumetrie oder 3D-Darstellung, auswirkt. Bisherige Studien zu diesem Thema umfassen vier verschiedene Postprocessing-Algorithmen. Die untersuchten Algorithmen zeigten sich bei verlustbehafteter Kompression im Bereich der erwähnten, publizierten Kompressionsraten weitgehend unbeeinflusst. Lediglich die computergestützte Messung von Stenosegraden in der digitalen Koronarangiographie kollidiert mit den in Großbritannien geltenden Empfehlungen. Die Verwendung unterschiedlicher Kompressionsalgorithmen schränkt die allgemeinernAussagekraft dieser Studienergebnisse außerdem ein.rnZur Erweiterung der Studienlage wurden vier weitere Nach- und Weiterverarbeitungsalgorithmen auf ihre Kompressionstoleranz untersucht. Dabei wurden die Kompressionsraten von 8:1, 10:1 und 15:1 verwendet, welche um die empfohlenen Kompressionsraten von CAR, DRG, RCR und ESR liegen und so ein praxisnahes Setting bieten. Als Kompressionsalgorithmus wurde JPEG2000 verwendet, aufgrund seiner zunehmenden Nutzung in Studien sowie seiner bereits erwähnten Vorzüge in Sachen Handhabung und Zusatzfunktionen. Die vier Algorithmen umfassten das 3D-Volume rendering von CT-Angiographien der Becken-Bein-Gefäße, die Computer-assistierte Detektion von Lungenrundherden, die automatisierte Volumetrie von Leberrundherden und die funktionelle Bestimmung der Ejektionsfraktion in computertomographischen Aufnahmen des Herzens.rnAlle vier Algorithmen zeigten keinen Einfluss durch irreversibler Bilddatenkompression in denrngewählten Kompressionsraten (8:1, 10:1 und 15:1). Zusammen mit der bestehenden Literatur deuten die Ergebnisse an, dass moderate irreversible Kompression im Rahmen aktueller Empfehlungen keinen Einfluss auf Nach- und Weiterverarbeitung medizinischer Bilder hat. Eine explizitere Vorhersage zu einem bestimmten, noch nicht untersuchten Algorithmus ist jedoch aufgrund der unterschiedlichen Funktionsweisen und Programmierungen nicht sicher möglich.rnSofern ein Postprocessing Algorithmus auf komprimiertes Bildmaterial angewendet werden soll, muss dieser zunächst auf seine Kompressionstoleranz getestet werden. Dabei muss der Test eine rechtlich-ethische Grundlage für den Einsatz des Algorithmus bei komprimiertem Bildmaterial schaffen. Es sind vor allem zwei Optionen denkbar, die Testung institutsintern, eventuell unter Zuhilfenahme von vorgefertigten Bibliotheken, oder die Testung durch den Hersteller des Algorithmus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quizás el Código Morse, inventado en 1838 para su uso en la telegrafía, es uno de los primeros ejemplos de la utilización práctica de la compresión de datos [1], donde las letras más comunes del alfabeto son codificadas con códigos más cortos que las demás. A partir de 1940 y tras el desarrollo de la teoría de la información y la creación de los primeros ordenadores, la compresión de la información ha sido un reto constante y fundamental entre los campos de trabajo de investigadores de todo tipo. Cuanto mayor es nuestra comprensión sobre el significado de la información, mayor es nuestro éxito comprimiéndola. En el caso de la información multimedia, su naturaleza permite la compresión con pérdidas, alcanzando así cotas de compresión imposibles para los algoritmos sin pérdidas. Estos “recientes” algoritmos con pérdidas han estado mayoritariamente basados en transformación de la información al dominio de la frecuencia y en la eliminación de parte de la información en dicho dominio. Transformar al dominio de la frecuencia posee ventajas pero también involucra unos costes computacionales inevitables. Esta tesis presenta un nuevo algoritmo de compresión multimedia llamado “LHE” (Logarithmical Hopping Encoding) que no requiere transformación al dominio de la frecuencia, sino que trabaja en el dominio del espacio. Esto lo convierte en un algoritmo lineal de reducida complejidad computacional. Los resultados del algoritmo son prometedores, superando al estándar JPEG en calidad y velocidad. Para ello el algoritmo utiliza como base la respuesta fisiológica del ojo humano ante el estímulo luminoso. El ojo, al igual que el resto de los sentidos, responde al logaritmo de la señal de acuerdo a la ley de Weber. El algoritmo se compone de varias etapas. Una de ellas es la medición de la “Relevancia Perceptual”, una nueva métrica que nos va a permitir medir la relevancia que tiene la información en la mente del sujeto y en base a la misma, degradar en mayor o menor medida su contenido, a través de lo que he llamado “sub-muestreado elástico”. La etapa de sub-muestreado elástico constituye una nueva técnica sin precedentes en el tratamiento digital de imágenes. Permite tomar más o menos muestras en diferentes áreas de una imagen en función de su relevancia perceptual. En esta tesis se dan los primeros pasos para la elaboración de lo que puede llegar a ser un nuevo formato estándar de compresión multimedia (imagen, video y audio) libre de patentes y de alto rendimiento tanto en velocidad como en calidad. ABSTRACT The Morse code, invented in 1838 for use in telegraphy, is one of the first examples of the practical use of data compression [1], where the most common letters of the alphabet are coded shorter than the rest of codes. From 1940 and after the development of the theory of information and the creation of the first computers, compression of information has been a constant and fundamental challenge among any type of researchers. The greater our understanding of the meaning of information, the greater our success at compressing. In the case of multimedia information, its nature allows lossy compression, reaching impossible compression rates compared with lossless algorithms. These "recent" lossy algorithms have been mainly based on information transformation to frequency domain and elimination of some of the information in that domain. Transforming the frequency domain has advantages but also involves inevitable computational costs. This thesis introduces a new multimedia compression algorithm called "LHE" (logarithmical Hopping Encoding) that does not require transformation to frequency domain, but works in the space domain. This feature makes LHE a linear algorithm of reduced computational complexity. The results of the algorithm are promising, outperforming the JPEG standard in quality and speed. The basis of the algorithm is the physiological response of the human eye to the light stimulus. The eye, like other senses, responds to the logarithm of the signal according with Weber law. The algorithm consists of several stages. One is the measurement of "perceptual relevance," a new metric that will allow us to measure the relevance of information in the subject's mind and based on it; degrade accordingly their contents, through what I have called "elastic downsampling". Elastic downsampling stage is an unprecedented new technique in digital image processing. It lets take more or less samples in different areas of an image based on their perceptual relevance. This thesis introduces the first steps for the development of what may become a new standard multimedia compression format (image, video and audio) free of patents and high performance in both speed and quality.