908 resultados para Loop detectors.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Long traffic queues on off-ramps significantly compromise the safety and throughput of motorways. Obtaining accurate queue information is crucial for countermeasure strategies. However, it is challenging to estimate traffic queues with locally installed inductive loop detectors. This paper deals with the problem of queue estimation with the interpretation of queuing dynamics and the corresponding time-occupancy distribution over motorway off-ramps. A novel algorithm for real-time queue estimation with two detectors is presented and discussed. Results derived from microscopic traffic simulation validated the effectiveness of the algorithm and revealed some of its useful features: (a) long and intermediate traffic queues could be accurately measured, (b) relatively simple detector input (i.e., time occupancy) was required, and (c) the estimation philosophy was independent with signal timing changes and provided the potential to cooperate with advanced strategies for signal control. Some issues concerning field implementation are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The primary objective of this study is to develop a robust queue estimation algorithm for motorway on-ramps. Real-time queue information is a vital input for dynamic queue management on metered on-ramps. Accurate and reliable queue information enables the management of on-ramp queue in an adaptive manner to the actual traffic queue size and thus minimises the adverse impacts of queue flush while increasing the benefit of ramp metering. The proposed algorithm is developed based on the Kalman filter framework. The fundamental conservation model is used to estimate the system state (queue size) with the flow-in and flow-out measurements. This projection results are updated with the measurement equation using the time occupancies from mid-link and link-entrance loop detectors. This study also proposes a novel single point correction method. This method resets the estimated system state to eliminate the counting errors that accumulate over time. In the performance evaluation, the proposed algorithm demonstrated accurate and reliable performances and consistently outperformed the benchmarked Single Occupancy Kalman filter (SOKF) method. The improvements over SOKF are 62% and 63% in average in terms of the estimation accuracy (MAE) and reliability (RMSE), respectively. The benefit of the innovative concepts of the algorithm is well justified by the improved estimation performance in congested ramp traffic conditions where long queues may significantly compromise the benchmark algorithm’s performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Texas Department of Transportation, Austin

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Texas Department of Transportation, Austin

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transportation Systems Center, Cambridge, Mass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a model for estimation of average travel time and its variability on signalized urban networks using cumulative plots. The plots are generated based on the availability of data: a) case-D, for detector data only; b) case-DS, for detector data and signal timings; and c) case-DSS, for detector data, signal timings and saturation flow rate. The performance of the model for different degrees of saturation and different detector detection intervals is consistent for case-DSS and case-DS whereas, for case-D the performance is inconsistent. The sensitivity analysis of the model for case-D indicates that it is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research project examined objective measures of driver behaviour and road users' perceptions on the usefulness and effectiveness of three specific VMS (Variable Message Signs) interventions to improve speeding and headway behaviours. The interventions addressed speeding behaviour alone (intervention 1), headway behaviour alone (intervention 2) and a combination of speeding and headway behaviour (intervention 3). Six VMS were installed along a segment of the Bruce Highway, with a series of three signs for each of the northbound and southbound traffic. Speeds and headway distances were measured with loop detectors installed before and after each VMS. Messages addressing speeding and headway were devised for display on the VMS. A driver could receive a message if they were detected as exceeding the posted speed limit (of 90km/hr) or if the distance to the vehicle in front was less than 2.0s. In addition to the on-road objective measurement of speeding and headway behaviours, the research project elicited self-reported responses to the speeding and headway messages from a sample of drivers via a community-based survey. The survey sought to examine the drivers' beliefs about the effectiveness of the signs and messages, and their views about the role, use, and effectiveness of VMS more generally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary objective of this study is to develop a robust queue estimation algorithm for motorway on-ramps. Real-time queue information is the most vital input for a dynamic queue management that can treat long queues on metered on-ramps more sophistically. The proposed algorithm is developed based on the Kalman filter framework. The fundamental conservation model is used to estimate the system state (queue size) with the flow-in and flow-out measurements. This projection results are updated with the measurement equation using the time occupancies from mid-link and link-entrance loop detectors. This study also proposes a novel single point correction method. This method resets the estimated system state to eliminate the counting errors that accumulate over time. In the performance evaluation, the proposed algorithm demonstrated accurate and reliable performances and consistently outperformed the benchmarked Single Occupancy Kalman filter (SOKF) method. The improvements over SOKF are 62% and 63% in average in terms of the estimation accuracy (MAE) and reliability (RMSE), respectively. The benefit of the innovative concepts of the algorithm is well justified by the improved estimation performance in the congested ramp traffic conditions where long queues may significantly compromise the benchmark algorithm’s performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network with real data set from loop detectors and taxi probes. Since the MFD represents the area-wide network traffic performances, it gives foundations for perimeter control strategies and an area traffic state estimation enabling area-based network control. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and develops a framework for the development of the MFD for Brisbane. Existence of the MFD in Brisbane network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning in network performance representation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Loop detectors are the oldest and widely used traffic data source. On urban arterials, they are mainly installed for signal control. Recently state of the art Bluetooth MAC Scanners (BMS) has significantly captured the interest of stakeholders for exploiting it for area wide traffic monitoring. Loop detectors provide flow- a fundamental traffic parameter; whereas BMS provides individual vehicle travel time between BMS stations. Hence, these two data sources complement each other, and if integrated should increase the accuracy and reliability of the traffic state estimation. This paper proposed a model that integrates loops and BMS data for seamless travel time and density estimation for urban signalised network. The proposed model is validated using both real and simulated data and the results indicate that the accuracy of the proposed model is over 90%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Loop detectors are widely used on the motorway networks where they provide point speed and traffic volumes. Models have been proposed for temporal and spatial generalization of speed for average travel time estimation. Advancement in technology provides complementary data sources such as Bluetooth MAC Scanner (BMS), detecting the MAC ID of the Bluetooth devices transported by the traveller. Matching the data from two BMS stations provides individual vehicle travel time. Generally, on the motorways loops are closely spaced, whereas BMS are placed few kilometres apart. In this research, we fuse BMSs and loops data to define the trajectories of the Bluetooth vehicles. The trajectories are utilised to estimate the travel time statistics between any two points along the motorway. The proposed model is tested using simulation and validated with real data from Pacific motorway, Brisbane. Comparing the model with the linear interpolation based trajectory provides significant improvements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Texas Department of Transportation, Austin

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Texas Department of Transportation, Austin