932 resultados para Long-term Ecology
Resumo:
Fossil pollen, stomata and charcoal were examined from a lake sedimentary sequence in the Glen Affric National Nature Reserve, one of the largest areas of remnant native pine woodland in Scotland, in order to assess ecosystem dynamics over the last 11 000 years. Results reveal that pinewood communities have been continuously present in East Glen Affric for the last 8300 years. Pinus sylvestris fi rst arrived in the area around 9900 cal. BP, but occurred in only low abundance for the subsequent 1600 years. Pine populations expanded around 8300 cal. BP and remained in relatively constant abundance throughout the remainder of the Holocene. There is no evidence of a hypothesized regional mid-Holocene ‘ pine decline ’ at the site. Charcoal results reveal that pinewood communities in East Glen Affric do not appear to have been dependent on fire for either their establishment or their maintenance as has previously been suggested.
Resumo:
1 Pollen and charcoal analysis at two lakes in southern Switzerland revealed that fire has had a prominent role in changing the woodland composition of this area for more than 7000 years. 2 The sediment of Lago di Origlio for the period between 5100 and 3100 bc cal. was sampled continuously with a time interval of about 10 years. Peaks of charcoal particles were significantly correlated with repeated declines in pollen of Abies, Hedera, Tilia, Ulmus, Fraxinus excelsior t., Fagus and Vitis and with increases in Alnus glutinosa t., shrubs (e.g. Corylus, Salix and Sambucus nigra t.) and several herbaceous species. The final disappearance of the lowland Abies alba stands at around 3150 bc cal. may be an example of a fire-caused local extinction of a fire-intolerant species. 3 Forest fires tended to diminish pollen diversity. The charcoal peaks were preceded by pollen types indicating human activity. Charcoal minima occurred during periods of cold humid climate, when fire susceptibility would be reduced. 4 An increase of forest fires at about 2100 bc cal. severely reduced the remaining fire-sensitive plants: the mixed-oak forest was replaced by a fire-tolerant alder–oak forest. The very strong increase of charcoal influx, and the marked presence of anthropogenic indicators, point to principally anthropogenic causes. 5 We suggest that without anthropogenic disturbances Abies alba would still form lowland forests together with various deciduous broadleaved tree taxa.
Resumo:
In order to explore the conservation ecology of frogs and lizards in the Sarapiqui region of Costa Rica, I compared populations and communities among forest fragments and La Selva Biological Station, as well as across 35 years of sampling at La Selva. Species richness in nine fragments combined was 85% of that found in La Selva, and community composition varied among sites and by fragment size class. Although communities in fragments differed fundamentally from those in intact forest, the high diversity observed across all fragments indicates that preserving a network of small forest patches may be of great conservation value to the herpetofauna of this region. According to data from past studies at La Selva, most common species of leaf-litter frogs and lizards demonstrated significant decreases in density over the 35-year period. My findings may represent either natural population fluctuations or sweeping faunal declines at this site.
Resumo:
Abstract: Australia’s ecosystems are the basis of our current and future prosperity, and our national well-being.A strong and sustainable Australian ecosystem science enterprise is vital for understanding and securing these ecosystems in the face of current and future challenges. This Plan defines the vision and key directions for a national ecosystem science capability that will enable Australia to understand and effectively manage its ecosystems for decades to come.The Plan’s underlying theme is that excellent science supports a range of activities, including public engagement, that enable us to understand and maintain healthy ecosystems.Those healthy ecosystems are the cornerstone of our social and economic well-being.The vision guiding the development of this Plan is that in 20 years’ time the status of Australian ecosystems and how they change will be widely reported and understood, and the prosperity and well-being they provide will be secure. To enable this, Australia’s national ecosystem science capability will be coordinated, collaborative and connected.The Plan is based on an extensive set of collaboratively generated proposals from national town hall meetings that also formthe basis for its implementation. Some directions within the Plan are for the Australian ecosystem science community itself to implement, others will involve the users of ecosystem science and the groups that fund ecosystem science.We identify six equal priority areas for action to achieve our vision: (i) delivering maximum impact for Australia: enhancing relationships between scientists and end-users; (ii) supporting long-termresearch; (iii) enabling ecosystem surveillance; (iv) making the most of data resources; (v) inspiring a generation: empowering the public with knowledge and opportunities; (vi) facilitating coordination, collaboration and leadership. This shared vision will enable us to consolidate our current successes, overcome remaining barriers and establish the foundations to ensure Australian ecosystem science delivers for the future needs of Australia..
Resumo:
The recent trend for journals to require open access to primary data included in publications has been embraced by many biologists, but has caused apprehension amongst researchers engaged in long-term ecological and evolutionary studies. A worldwide survey of 73 principal investigators (Pls) with long-term studies revealed positive attitudes towards sharing data with the agreement or involvement of the PI, and 93% of PIs have historically shared data. Only 8% were in favor of uncontrolled, open access to primary data while 63% expressed serious concern. We present here their viewpoint on an issue that can have non-trivial scientific consequences. We discuss potential costs of public data archiving and provide possible solutions to meet the needs of journals and researchers.
Resumo:
Residue retention is an important issue in evaluating the sustainability of production forestry. However, its long-term impacts have not been studied extensively, especially in sub-tropical environments. This study investigated the long-term impact of harvest residue retention on tree nutrition, growth and productivity of a F1 hybrid (Pinus elliottii var. elliottii × Pinus caribaea var. hondurensis) exotic pine plantation in sub-tropical Australia, under three harvest residue management regimes: (1) residue removal, RR0; (2) single residue retention, RR1; and (3) double residue retention, RR2. The experiment, established in 1996, is a randomised complete block design with 4 replicates. Tree growth measurements in this study were carried out at ages 2, 4, 6, 8 and 10 years, while foliar nutrient analyses were carried out at ages 2, 4, 6 and 10 years. Litter production and litter nitrogen (N) and phosphorus (P) measurements were carried out quarterly over a 15-month period between ages 9 and 10 years. Results showed that total tree growth was still greater in residue-retained treatments compared to the RR0 treatment. However, mean annual increments of diameter at breast height (MAID) and basal area (MAIB) declined significantly after age 4 years to about 68-78% at age 10 years. Declining foliar N and P concentrations accounted for 62% (p < 0.05) of the variation of growth rates after age 4 years, and foliar N and P concentrations were either marginal or below critical concentrations. In addition, litter production, and litter N and P contents were not significantly different among the treatments. This study suggests that the impact of residue retention on tree nutrition and growth rates might be limited over a longer period, and that the integration of alternative forest management practices is necessary to sustain the benefits of harvest residues until the end of the rotation.
Resumo:
In our recent paper [1], we discussed some potential undesirable consequences of public data archiving (PDA) with specific reference to long-term studies and proposed solutions to manage these issues. We reaffirm our commitment to data sharing and collaboration, both of which have been common and fruitful practices supported for many decades by researchers involved in long-term studies. We acknowledge the potential benefits of PDA (e.g., [2]), but believe that several potential negative consequences for science have been underestimated [1] (see also 3 and 4). The objective of our recent paper [1] was to define practices to simultaneously maximize the benefits and minimize the potential unwanted consequences of PDA.
Resumo:
In 1999, the Department of Employment, Economic Development and Innovation (DEEDI), Fisheries Queensland undertook a new initiative to collect long term monitoring data of various important stocks including reef fish. This data and monitoring manual for the reef fish component of that program which was based on Underwater Visual Census methodology of 24 reefs on the Great Barrier Reef between 1999 and 2004. Data was collected using six 50m x 5m transects at 4 sites on 24 reefs. Benthic cover type was also recorded for 10m of each transect. The attached Access Database contains 5 tables being: SITE DETAILS TABLE Survey year Data entry complete REF survey site ID Site # (1-4) Location (reef name) Site Date (date surveyed) Observer 1 (3 initials to identify who estimated fish lengths and recorded benthic cover) TRANSECT DETAILS Survey ID Transect Number (1-6) Time (the transect was surveyed) Visibility (in metres) Minimum Depth surveyed (m) Maximum Depth surveyed (m) Percent of survey completed (%) Comments SUBSTRATE Survey ID Transect Number (1-6) then % cover of each of eth following categories of benthic cover types Dead Coral Live Coral Soft Coral Rubble Sand Sponge Algae Sea Grass Other COORDINATES (over survey sites) from -14 38.792 to -19 44.233 and from 145 21.507 to 149 55.515 SIGHTINGS ID Survey ID Transect Number (1-6) CAAB Code Scientific Name Reef Fish Length (estimated Fork Length of fish; -1 = unknown or not recorded) Outside Transect (if a fish was observed outside a transect -1 was recorded) Morph Code (F = footballer morph for Plectropomus laevis, S = Spawning colour morph displayed)
Resumo:
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) forests dominate in Finnish Lapland. The need to study the effect of both soil factors and site preparation on the performance of planted Scots pine has increased due to the problems encountered in reforestation, especially on mesic and moist, formerly spruce-dominated sites. The present thesis examines soil hydrological properties and conditions, and effect of site preparation on them on 10 pine- and 10 spruce-dominated upland forest sites. Finally, the effects of both the site preparation and reforestation methods, and soil hydrology on the long-term performance of planted Scots pine are summarized. The results showed that pine and spruce sites differ significantly in their soil physical properties. Under field capacity or wetter soil moisture conditions, planted pines presumably suffer from excessive soil water and poor soil aeration on most of the originally spruce sites, but not on the pine sites. The results also suggested that site preparation affects the soil-water regime and thus prerequisites for forest growth over two decades after site preparation. High variation in the survival and mean height of planted pine was found. The study suggested that on spruce sites, pine survival is the lowest on sites that dry out slowly after rainfall events, and that height growth is the fastest on soils that reach favourable aeration conditions for root growth soon after saturation, and/or where the average air-filled porosity near field capacity is large enough for good root growth. Survival, but not mean height can be enhanced by employing intensive site preparation methods on spruce sites. On coarser-textured pine sites, site preparation methods don t affect survival, but methods affecting soil fertility, such as prescribed burning and ploughing, seem to enhance the height growth of planted Scots pines over several decades. The use of soil water content in situ as the sole criterion for sites suitable for pine reforestation was tested and found to be a relatively uncertain parameter. The thesis identified new potential soil variables, which should be tested using other data in the future.
Resumo:
We used a long-term fire experiment in south-east Queensland, Australia, to determine the effects of frequent prescribed burning and fire exclusion on understorey vegetation (<7.5 m) richness and density in Eucalyptus pilularis forest. Our study provided a point in time assessment of the standing vegetation and soil-stored vegetation at two experimental sites with treatments of biennial burning, quadrennial burning since 19711972 and no burning since 1969. Vegetation composition, density and richness of certain plant groups in the standing and soil-stored vegetation were influenced by fire treatments. The density of resprouting plants <3 m in height was higher in the biennially burnt treatment than in the unburnt treatment, but resprouters 37.5 m in height were absent from the biennial burning treatment. Obligate seeder richness and density in the standing vegetation was not significantly influenced by the fire treatments, but richness of this plant group in the seed bank was higher in the quadrennial treatment at one site and in the long unburnt treatment at the other site. Long unburnt treatments had an understorey of rainforest species, while biennial burning at one site and quadrennial burning at the other site were associated with greater standing grass density relative to the unburnt treatment. This difference in vegetation composition due to fire regime potentially influences the flammability of the standing understorey vegetation. Significant interactions between fire regime and site, apparent in the standing and soil-stored vegetation, demonstrate the high degree of natural variability in vegetation community responses to fire regimes.
Resumo:
Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH4 +), and nitrate (NO3 −), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.
Resumo:
Invasive species, local plant communities and invaded ecosystems change over space and time. Quantifying this change may lead to a better understanding of the ecology and the effective management of invasive species. We used data on density of the highly invasive shrub Lantana camara (lantana) for the period 1990-2008 from a 50 ha permanent plot in a seasonally dry tropical forest of Mudumalai in southern India. We used a cumulative link mixed-effects regression approach to model the transition of lantana from one qualitative density state to another as a function of biotic factors such as indicators of competition from local species (lantana itself, perennial grasses, invasive Chromolaena odorata, the native shrub Helicteres isora and basal area of native trees) and abiotic factors such as fire frequency, inter-annual variability of rainfall and relative soil moisture. The density of lantana increased substantially during the study period. Lantana density was negatively associated with the density of H. isora, positively associated with basal area of native trees, but not affected by the presence of grasses or other invasive species. In the absence of fire, lantana density increased with increasing rainfall. When fires occurred, transitions to higher densities occurred at low rainfall values. In drier regions, lantana changed from low to high density as rainfall increased while in wetter regions of the plot, lantana persisted in the dense category irrespective of rainfall. Lantana seems to effectively utilize resources distributed in space and time to its advantage, thus outcompeting local species and maintaining a population that is not yet self-limiting. High-risk areas and years could potentially be identified based on inferences from this study for facilitating management of lantana in tropical dry forests.
Resumo:
As part of an ongoing program of benthic sampling and related assessments of sediment quality at Gray’s Reef National Marine Sanctuary (GRNMS) off the coast of Georgia, a survey of soft-bottom benthic habitats was conducted in spring 2005 to characterize condition of macroinfaunal assemblages and levels of chemical contaminants in sediments and biota relative to a baseline survey carried out in spring 2000. Distribution and abundance of macrobenthos were related foremost to sediment type (median particle size, % gravel), which in turn varied according to bottom-habitat mesoscale features (e.g., association with live bottom versus flat or rippled sand areas). Overall abundance and diversity of soft-bottom benthic communities were similar between the two years, though dominance patterns and relative abundances of component species were less repeatable. Seasonal summer pulses of a few taxa (e.g., the bivalve Ervilia sp. A) observed in 2000 were not observed in 2005. Concentrations of chemical contaminants in sediments and biota, though detectable in both years, were consistently at low, background levels and no exceedances of sediment probable bioeffect levels or FDA action levels for edible fish or shellfish were observed. Near-bottom dissolved oxygen levels and organic-matter content of sediments also have remained within normal ranges. Highly diverse benthic assemblages were found in both years, supporting the premise that GRNMS serves as an important reservoir of marine biodiversity. A total of 353 taxa (219 identified to species) were collected during the spring 2005 survey. Cumulatively, 588 taxa (371 identified to species) have been recorded in the sanctuary from surveys in 2000, 2001, 2002, and 2005. Species Accumulation Curves indicate that the theoretical maximum should be in excess of 600 species. Results of this study will be of value in advancing strategic science and management goals for GRNMS, including characterization and long-term monitoring of sanctuary resources and processes, as well as supporting evolving interests in ecosystem-based management of the surrounding South Atlantic Bight (SAB) ecosystem. (PDF contains 46 pages)
Resumo:
For more than 55 years, data have been collected on the population of pike Esox lucius in Windermere, first by the Freshwater Biological Association (FBA) and, since 1989, by the Institute of Freshwater Ecology (IFE) of the NERC Centre for Ecology and Hydrology. The aim of this article is to explore some methodological and statistical issues associated with the precision of pike gill net catches and catch-per-unit-effort (CPUE) data, further to those examined by Bagenal (1972) and especially in the light of the current deployment within the Windermere long-term sampling programme. Specifically, consideration is given to the precision of catch estimates from gill netting, including the effects of sampling different locations, the effectiveness of sampling for distinguishing between years, and the effects of changing fishing effort.
Resumo:
Genetic structure and average long-term connectivity and effective size of mutton snapper (Lutjanus analis) sampled from offshore localities in the U.S. Caribbean and the Florida Keys were assessed by using nuclear-encoded microsatellites and a fragment of mitochondrial DNA. No significant differences in allele, genotype (microsatellites), or haplotype (mtDNA) distributions were detected; tests of selective neutrality (mtDNA) were nonsignificant after Bonferroni correction. Heuristic estimates of average long-term rate of migration (proportion of migrant individuals/generation) between geographically adjacent localities varied from 0.0033 to 0.0054, indicating that local subpopulations could respond independently of environmental perturbations. Estimates of average longterm effective population sizes varied from 341 to 1066 and differed significantly among several of the localities. These results indicate that over time larval drift and interregional adult movement may not be sufficient to maintain population sustainability across the region and that there may be different demographic stocks at some of the localities studied. The estimate of long-term effective population size at the locality offshore of St. Croix was below the minimum threshold size considered necessary to maintain the equilibrium between the loss of adaptive genetic variance from genetic drift and its replacement by mutation. Genetic variability in mutton snapper likely is maintained at the intraregional level by aggregate spawning and random mating of local populations. This feature is perhaps ironic in that aggregate spawning also renders mutton snapper especially vulnerable to overexploitation.