719 resultados para Long-Period Grating
Resumo:
The novel long-period fiber grating (LPFG) film sensor is composed of the long-period grating coated with solgel-derived sensitive films. The characteristics of the transmissivity of the LPFG film sensor are studied. By analyzing the relation among the sensitivity S-n, the thin film optical parameters, and the fiber grating parameters, the optimal design parameters of the LPFG film sensor are obtained. Data simulation shows that the resolution of the refractive index of this LPFG film sensor is predicted to be 10(-8). Experimentally, a LPFG film sensor for detection Of C2H5OH was fabricated, and a preliminary gas-sensing test was performed. (c) 2006 Optical Society of America.
Resumo:
By considering all possible high order diffracted waves, the authors calculate the coupling efficiency of long period gratings for 3-5 mu m quantum-well infra-red photodetectors (QWIPs) on the basis of the modal expansion model (MEM). A large coupling efficiency for 3-5 mu m QWIPs has been demonstrated. This greatly reduces the difficulties in fabricating 3-5 mu m grating coupled QWIPs and opens the way to fabricate high performance 3-5 mu m and two colour QWIPs image arrays.
Resumo:
A long period grating is interrogated with a fibre Bragg grating using a derivative spectroscopy technique. A quasi-linear relationship between the output of the sensing scheme and the curvature experienced by the long period grating is demonstrated, with a sensitivity of 5.05 m and with an average curvature resolution of 2.9 × 10-2 m-1. In addition, the feasibility of multiplexing an in-line series of long period gratings with this interrogation scheme is demonstrated with two pairs of fibre Bragg gratings and long period gratings. With this arrangement the cross-talk error between channels was less than ± 2.4 × 10-3 m-1.
Resumo:
A long period fibre grating written in a progressive three-layered optical fibre is shown to exhibit an attenuation band that has a very low bending sensitivity (5.1×10 –2 nm m) compared to normal step-index fibre, and is also insensitive to changes in the refractive index of the surrounding medium. Applications to sensing and telecommunications are discussed.
Resumo:
The behavior of a temperature self-compensating, fiber, long-period grating (LPG) device is studied. This device consists of a single 325-µm-period LPG recorded across two sections of a single-mode B-Ge-codoped fiber—one section bare and the other coated with a 1-µm thickness of Ag. This structure generates two attenuation bands associated with the eighth and ninth cladding modes, which are spectrally close together (~60 nm). The attenuation band associated with the Ag-coated section is unaffected by changes in the refractive index of the surrounding medium and can be used to compensate for the temperature of the bare-fiber section. The sensor has a resolution of ±1.0 × 10-3 for the refractive index and ±0.3 °C for the temperature. The effect of bending on the spectral characteristics of the two attenuation bands was found to be nonlinear, with the Ag-coated LPG having the greater sensitivity.
Resumo:
A compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long-period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre is presented. One of the LPGs is sensitive to both SRI and temperature, whilst the second is sensitive to temperature only.
Resumo:
Reported are experimental results from investigations of the sensing properties of long-period gratings (LPGs) recorded in two different geometries of photonic crystal fibre (PCF): a large-mode area PCF and an endlessly single mode PCF. The LPGs have been characterised for their sensitivity to temperature, bending, surrounding index and strain. The LPGs in both fibres have been found to have negligible temperature sensitivity whilst exhibiting useful strain sensitivities. Strong directional bend sensitivity is shown by one PCF whilst the other shows good non-directional bend sensitivity. The fibres exhibit differing sensitivities to surrounding refractive index.
Resumo:
A long period grating has been fabricated in endlessly single-mode photonic crystal fibre using a spatially-periodic electric arc discharge. The sensing characteristics of the grating have been studied and it was found to possess an insensitivity to temperature, a bend sensitivity of 3.7 nm · m and a strain sensitivity of -2.0 pm/µe.
Resumo:
We study the effects of temperature and strain on the spectra of the first and second-order diffraction attenuation bands of a single long-period grating (LPG) in step-index fibre. The primary and second-order attenuation bands had comparable strength with the second-order bands appearing in the visible and near-infra red parts of the spectrum. Using first and second-order diffraction to the eighth cladding mode a sensitivity matrix was obtained with limiting accuracy given by cross-sensitivity of ~1.19% of the measurement. The sensing scheme presented as a limiting temperature and strain resolution of ±0.7 °C and ~±25 µ.
Resumo:
A low cost interrogation scheme is demonstrated for a refractometer based on an in-line fiber long period grating (LPG) Mach–Zehnder interferometer. Using this interrogation scheme the minimum detectable change in refractive index of ?n ~ 1.8×10-6 is obtained, which is the highest resolution achieved using a fiber LPG device, and is comparable to precision techniques used in the industry including high performance liquid chromatography and ultraviolet spectroscopy.
Resumo:
A single long-period fibre grating was written in a biconical fibre taper made from standard communications step-index optical fibre, resulting in an interferometric fibre sensor device that provided a resolution of 1×10–4 for refractive indices in the range of 1.30 to 1.34, suggesting that these devices may be suitable for use with aqueous solutions.
Resumo:
A long period grating was photoinscribed step-by-step in microstructured poly(methyl methacrylate) fiber for the first time using a continuous wave HeCd laser at 325 nm, irradiating the fiber with a power of 1 mW. The grating had a length of 2 cm and a period of 1 mm. A series of cladding mode coupling resonances were observed throughout the spectral region studied of 600 to 1100 nm. The resonance wavelengths were shown to be sensitive to the diffusion of water into the fiber.
Resumo:
A long period grating (LPG) written in a standard optical fibre was modified by using a femtosecond laser to induce an asymmetric change in the cladding's refractive index. This device produced blue and red wavelength shifts depending on the orientation of applied curvature, with maximum sensitivities of -1.6 nm m and +3.8 nm m, suggesting that this type of LPG may be useful as a shape sensor.
Resumo:
We present a compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre. One of the LPGs is sensitive to both SRI and temperature changes whilst the second is SRI-insensitive but shows spectral shift with temperature changes. In addition, we show that a resonance peak of the SRI-insensitive LPG can be designed to appear in the EDFA wavelength region with potential use for gain flattening applications.