934 resultados para Long term foreign exchange forecasting
Resumo:
Background and Aim In patients with cystic fibrosis (CF) the architecture of the developing lungs and the ventilation of lung units are progressively affected, influencing intrapulmonary gas mixing and gas exchange. We examined the long-term course of blood gas measurements in relation to characteristics of lung function and the influence of different CFTR genotype upon this process. Methods Serial annual measurements of PaO2 and PaCO2 assessed in relation to lung function, providing functional residual capacity (FRCpleth), lung clearance index (LCI), trapped gas (VTG), airway resistance (sReff), and forced expiratory indices (FEV1, FEF50), were collected in 178 children (88 males; 90 females) with CF, over an age range of 5 to 18 years. Linear mixed model analysis and binary logistic regression analysis were used to define predominant lung function parameters influencing oxygenation and carbon dioxide elimination. Results PaO2 decreased linearly from age 5 to 18 years, and was mainly associated with FRCpleth, (p < 0.0001), FEV1 (p < 0.001), FEF50 (p < 0.002), and LCI (p < 0.002), indicating that oxygenation was associated with the degree of pulmonary hyperinflation, ventilation inhomogeneities and impeded airway function. PaCO2 showed a transitory phase of low PaCO2 values, mainly during the age range of 5 to 12 years. Both PaO2 and PaCO2 presented with different progression slopes within specific CFTR genotypes. Conclusion In the long-term evaluation of gas exchange characteristics, an association with different lung function patterns was found and was closely related to specific genotypes. Early examination of blood gases may reveal hypocarbia, presumably reflecting compensatory mechanisms to improve oxygenation.
Resumo:
This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.
Resumo:
This paper is concerned with long-term (20+ years) forecasting of broadband traffic in next-generation networks. Such long-term approach requires going beyond extrapolations of past traffic data while facing high uncertainty in predicting the future developments and facing the fact that, in 20 years, the current network technologies and architectures will be obsolete. Thus, "order of magnitude" upper bounds of upstream and downstream traffic are deemed to be good enough to facilitate such long-term forecasting. These bounds can be obtained by evaluating the limits of human sighting and assuming that these limits will be achieved by future services or, alternatively, by considering the contents transferred by bandwidth-demanding applications such as those using embedded interactive 3D video streaming. The traffic upper bounds are a good indication of the peak values and, subsequently, also of the future network capacity demands. Furthermore, the main drivers of traffic growth including multimedia as well as non-multimedia applications are identified. New disruptive applications and services are explored that can make good use of the large bandwidth provided by next-generation networks. The results can be used to identify monetization opportunities of future services and to map potential revenues for network operators. © 2014 The Author(s).
Resumo:
This study examines the forecasting accuracy of alternative vector autoregressive models each in a seven-variable system that comprises in turn of daily, weekly and monthly foreign exchange (FX) spot rates. The vector autoregressions (VARs) are in non-stationary, stationary and error-correction forms and are estimated using OLS. The imposition of Bayesian priors in the OLS estimations also allowed us to obtain another set of results. We find that there is some tendency for the Bayesian estimation method to generate superior forecast measures relatively to the OLS method. This result holds whether or not the data sets contain outliers. Also, the best forecasts under the non-stationary specification outperformed those of the stationary and error-correction specifications, particularly at long forecast horizons, while the best forecasts under the stationary and error-correction specifications are generally similar. The findings for the OLS forecasts are consistent with recent simulation results. The predictive ability of the VARs is very weak.
Resumo:
The article provides a method for long-term forecast of frame alignment losses based on the bit-error rate monitoring for structure-agnostic circuit emulation service over Ethernet in a mobile backhaul network. The developed method with corresponding algorithm allows to detect instants of probable frame alignment losses in a long term perspective in order to give engineering personnel extra time to take some measures aimed at losses prevention. Moreover, long-term forecast of frame alignment losses allows to make a decision about the volume of TDM data encapsulated into a circuit emulation frame in order to increase utilization of the emulated circuit. The developed long-term forecast method formalized with the corresponding algorithm is recognized as cognitive and can act as a part of network predictive monitoring system.
Resumo:
BACKGROUND: Persisting metallic intraocular foreign bodies (IOFB) with a ferrous content have been associated with ocular siderosis and retinal degeneration. We describe two patients in whom a metallic IOFB containing iron was left embedded for many years in the choroid and sclera after having penetrated through the vitreous and the retina. HISTORY AND SIGNS: Two male patients, aged 41 and 48 years, presented with a metallic IOFB sustained during a work accident involving metal tools. THERAPY AND OUTCOME: For the first patient it was deemed unwise to operate, as the IOFB was also lodged very deeply in the choroid and sclera in the inferior temporal quadrant. The second patient underwent pars plana vitrectomy, but the IOFB could not be removed surgically as it was too deeply embedded in the sclera and choroid. After a period of 6 years (Case 1) and 4 years (Case 2) of follow-up, visual acuity remained at 1.0 and the IOFB was encased in a fibrotic capsule in both cases. Full-field and multifocal electroretinograms showed an inter-ocular asymmetry at baseline, which remained stable during the follow-up. CONCLUSIONS: Ocular siderosis may not develop in patients with a deeply embedded metallic IOFB. Regular monitoring of both visual function and the electroretinogram is mandatory when the IOFB is left inside the eye.
Resumo:
Though anthropogenic impacts on boundary layer climates are expected to be large in dense urban areas, to date very few studies of energy flux observations are available. We report on 3.5 years of measurements gathered in central London, UK. Radiometer and eddy covariance observations at two adjacent sites, at different heights, were analysed at various temporal scales and with respect to meteorological conditions, such as cloud cover. Although the evaporative flux is generally small due to low moisture availability and a predominately impervious surface, the enhancement following rainfall usually lasts for 12–18 h. As both the latent and sensible heat fluxes are larger in the afternoon, they maintain a relatively consistent Bowen ratio throughout the middle of the day. Strong storage and anthropogenic heat fluxes sustain high and persistently positive sensible heat fluxes. At the monthly time scale, the urban surface often loses more energy by this turbulent heat flux than is gained from net all-wave radiation. Auxiliary anthropogenic heat flux information suggest human activities in the study area are sufficient to provide this energy.
Resumo:
The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
Includes bibliography
Resumo:
Forecasting the time, location, nature, and scale of volcanic eruptions is one of the most urgent aspects of modern applied volcanology. The reliability of probabilistic forecasting procedures is strongly related to the reliability of the input information provided, implying objective criteria for interpreting the historical and monitoring data. For this reason both, detailed analysis of past data and more basic research into the processes of volcanism, are fundamental tasks of a continuous information-gain process; in this way the precursor events of eruptions can be better interpreted in terms of their physical meanings with correlated uncertainties. This should lead to better predictions of the nature of eruptive events. In this work we have studied different problems associated with the long- and short-term eruption forecasting assessment. First, we discuss different approaches for the analysis of the eruptive history of a volcano, most of them generally applied for long-term eruption forecasting purposes; furthermore, we present a model based on the characteristics of a Brownian passage-time process to describe recurrent eruptive activity, and apply it for long-term, time-dependent, eruption forecasting (Chapter 1). Conversely, in an effort to define further monitoring parameters as input data for short-term eruption forecasting in probabilistic models (as for example, the Bayesian Event Tree for eruption forecasting -BET_EF-), we analyze some characteristics of typical seismic activity recorded in active volcanoes; in particular, we use some methodologies that may be applied to analyze long-period (LP) events (Chapter 2) and volcano-tectonic (VT) seismic swarms (Chapter 3); our analysis in general are oriented toward the tracking of phenomena that can provide information about magmatic processes. Finally, we discuss some possible ways to integrate the results presented in Chapters 1 (for long-term EF), 2 and 3 (for short-term EF) in the BET_EF model (Chapter 4).
Resumo:
We study gift exchange in a field experiment where a random subsample of participants in the Swiss Labour Force Survey received vouchers to be used in adult training. Actual voucher redemption can be traced, giving us the unique opportunity to study whether gift exchange in the form of participation in future rounds of the survey depends on the perceived usefulness of the gift. The group of voucher recipients as a whole has significantly higher response rates. There is considerable heterogeneity, however. Our results point to a long-lasting gift exchange relationship only for the subgroup that redeemed their vouchers.
Resumo:
The aim of this paper is to examine the short term dynamics of foreign exchange rate spreads. Using a vector autoregressive model (VAR) we show that most of the variation in the spread comes from the long run dependencies between past and future spreads rather than being caused by changes in inventory, adverse selection, cost of carry or order processing costs. We apply the Integrated Cumulative Sum of Squares (ICSS) algorithm of Inclan and Tiao (1994) to discover how often spread volatility changes. We find that spread volatility shifts are relatively uncommon and shifts in one currency spread tend not to spillover to other currency spreads. © 2013.