999 resultados para Long Waves
Resumo:
Geophysical fluid models often support both fast and slow motions. As the dynamics are often dominated by the slow motions, it is desirable to filter out the fast motions by constructing balance models. An example is the quasi geostrophic (QG) model, which is used widely in meteorology and oceanography for theoretical studies, in addition to practical applications such as model initialization and data assimilation. Although the QG model works quite well in the mid-latitudes, its usefulness diminishes as one approaches the equator. Thus far, attempts to derive similar balance models for the tropics have not been entirely successful as the models generally filter out Kelvin waves, which contribute significantly to tropical low-frequency variability. There is much theoretical interest in the dynamics of planetary-scale Kelvin waves, especially for atmospheric and oceanic data assimilation where observations are generally only of the mass field and thus do not constrain the wind field without some kind of diagnostic balance relation. As a result, estimates of Kelvin wave amplitudes can be poor. Our goal is to find a balance model that includes Kelvin waves for planetary-scale motions. Using asymptotic methods, we derive a balance model for the weakly nonlinear equatorial shallow-water equations. Specifically we adopt the ‘slaving’ method proposed by Warn et al. (Q. J. R. Meteorol. Soc., vol. 121, 1995, pp. 723–739), which avoids secular terms in the expansion and thus can in principle be carried out to any order. Different from previous approaches, our expansion is based on a long-wave scaling and the slow dynamics is described using the height field instead of potential vorticity. The leading-order model is equivalent to the truncated long-wave model considered previously (e.g. Heckley & Gill, Q. J. R. Meteorol. Soc., vol. 110, 1984, pp. 203–217), which retains Kelvin waves in addition to equatorial Rossby waves. Our method allows for the derivation of higher-order models which significantly improve the representation of Rossby waves in the isotropic limit. In addition, the ‘slaving’ method is applicable even when the weakly nonlinear assumption is relaxed, and the resulting nonlinear model encompasses the weakly nonlinear model. We also demonstrate that the method can be applied to more realistic stratified models, such as the Boussinesq model.
Resumo:
This doctoral thesis originates from an observational incongruence between the perennial aims and aspirations of economic endeavour and actually recorded outcomes, which frequently seem contrary to those intended and of a recurrent, cyclical type. The research hypothesizes parallel movement between unstable business environments through time, as expressed by periodically fluctuating levels of economic activity, and the precipitation rates of industrial production companies. A major problem arose from the need to provide theoretical and empirical cohesion from the conflicting, partial and fragmented interpretations of several hundred historians and economists, without which the research question would remain unanswerable. An attempt to discover a master cycle, or superimposition theorem, failed, but was replaced by minute analysis of both the concept of cycles and their underlying data-bases. A novel technique of congregational analysis emerged, resulting in an integrated matrix of numerical history. Two centuries of industrial revolution history in England and Wales was then explored and recomposed for the first time in a single account of change, thereby providing a factual basis for the matrix. The accompanying history of the Birmingham area provided the context of research into the failure rates and longevities of firms in the city's staple metal industries. Sample specific results are obtained for company longevities in the Birmingham area. Some novel presentational forms are deployed for results of a postal questionnaire to surviving firms. Practical demonstration of the new index of national economic activity (INEA) in relation to company insolvencies leads to conclusions and suggestions for further applications of research into the tempo of change, substantial Appendices support the thesis and provide a compendium of information covering immediately contiguous domains.
Resumo:
We study the existence and stability of periodic travelling-wave solutions for generalized Benjamin-Bona-Mahony and Camassa-Holm equations. To prove orbital stability, we use the abstract results of Grillakis-Shatah-Strauss and the Floquet theory for periodic eigenvalue problems.
Resumo:
Water waves generated by landslides were long menace in certain localities and the study of this phenomenon were carried out at an accelerated rate in the last decades. Nevertheless, the phase of wave creation was found to be very complex. As such, a numerical model based on Boussinesq equations was used to describe water waves generated by local disturbance. This numerical model takes in account the vertical acceleration of the particles and considers higher orders derivate terms previously neglected by Boussinesq, so that in the generation zone, this model can support high relative amplitude of waves.
Resumo:
In the present work we use an asymptotic approach to obtain the long wave equations. The shallow water equation is put as a function of an external parameter that is a measure of both the spatial scales anisotropy and the fast to slow time ratio. The values given to the external parameters are consistent with those computed using typical values of the perturbations in tropical dynamics. Asymptotically, the model converge toward the long wave model. Thus, it is possible to go toward the long wave approximation through intermediate realizable states. With this approach, the resonant nonlinear wave interactions are studied. To simplify, the reduced dynamics of a single resonant triad is used for some selected equatorial trios. It was verified by both theoretical and numerical results that the nonlinear energy exchange period increases smoothly as we move toward the long wave approach. The magnitude of the energy exchanges is also modified, but in this case depends on the particular triad used and also on the initial energy partition among the triad components. Some implications of the results for the tropical dynamics are disccussed. In particular, we discuss the implications of the results for El Nĩo and the Madden-Julian in connection with other scales of time and spatial variability. © Published under licence by IOP Publishing Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The marsh porosity method, a type of thin slot wetting and drying algorithm in a two-dimensional finite element long wave hydrodynamic model, is discussed and analyzed to assess model performance. Tests, including comparisons to simple examples and theoretical calculations, examine the effects of varying the marsh porosity parameters. The findings demonstrate that the wetting and drying concept of marsh porosity, often used in finite element hydrodynamic modeling, can behave in a more complex manner than initially expected.
Resumo:
This paper presents new laboratory data on the generation of long waves by the shoaling and breaking of transient-focused short-wave groups. Direct offshore radiation of long waves from the breakpoint is shown experimentally for the first time. High spatial resolution enables identification of the relationship between the spatial gradients of the short-wave envelope and the long-wave surface. This relationship is consistent with radiation stress theory even well inside the surf zone and appears as a result of the strong nonlinear forcing associated with the transient group. In shallow water, the change in depth across the group leads to asymmetry in the forcing which generates significant dynamic setup in front of the group during shoaling. Strong amplification of the incident dynamic setup occurs after short-wave breaking. The data show the radiation of a transient long wave dominated by a pulse of positive elevation, preceded and followed by weaker trailing waves with negative elevation. The instantaneous cross-shore structure of the long wave shows the mechanics of the reflection process and the formation of a transient node in the inner surf zone. The wave run-up and relative amplitude of the radiated and incident long waves suggests significant modification of the incident bound wave in the inner surf zone and, the dominance of long waves generated by the breaking process. It is proposed that these conditions occur when the primary short waves and bound wave are not shallow water waves at the breakpoint. A simple criterion is given to determine these conditions, which generally occur for the important case of storm waves.
Resumo:
In this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.
Resumo:
The aim of the present study is to understand the biennial scale stratosphere-troposphere interactions over India, and synoptic to interannual timescale meridional stratosphere-troposhere exchanges caused by upper tropospheric/lower stratospheric longwaves using NCEP/NCAR reanalysis data and satellite measured total ozone data. The biennial timescale interaction between lower stratosphere and troposphere over Thumba is analysed using high-resolution radiosonde data. The results suggest that TBO and QBO are two different phenomena with nearly biennial periodicity. Interannual timescale meridional stratosphere-troposphere exchanges caused by the newly documented Asia Pacific Wave (APW) were analysed using ozone as tracer of atmospheric motion. Synoptic timescale meridional stratosphere-troposhere exchanges caused by subtropical upper tropospheric long waves over Asia were studied using global total ozone measurements from TOMS. This research work can be extended to study the influence of decadal scale epochal nature in Indian summer monsoon activity on the APW generated total ozone anomalies around the globe and the trend estimates in total ozone
Resumo:
The present study investigates the growth of error in baroclinic waves. It is found that stable or neutral waves are particularly sensitive to errors in the initial condition. Short stable waves are mainly sensitive to phase errors and the ultra long waves to amplitude errors. Analysis simulation experiments have indicated that the amplitudes of the very long waves become usually too small in the free atmosphere, due to the sparse and very irregular distribution of upper air observations. This also applies to the four-dimensional data assimilation experiments, since the amplitudes of the very long waves are usually underpredicted. The numerical experiments reported here show that if the very long waves have these kinds of amplitude errors in the upper troposphere or lower stratosphere the error is rapidly propagated (within a day or two) to the surface and to the lower troposphere.
Resumo:
A system for continuous data assimilation described recently (Bengtsson & Gustavsson, 1971) has been further developed and tested under more realistic conditions. A balanced barotropic model is used and the integration is performed over an octagon covering the area to the north of 20° N. Comparisons have been made between using data from the actual aerological network and data from a satellite in a polar orbit. The result of the analyses has been studied in different subregions situated in data sparse as well as in data dense areas. The errors of the analysis have also been studied in the wave spectrum domain. Updating is performed using data generated by the model but also by model-independent data. Rather great differences are obtained between the two experiments especially with respect to the ultra-long waves. The more realistic approach gives much larger analysis error. In general the satellite updating yields somewhat better result than the updating from the conventional aerological network especially in the data sparse areas over the oceans. Most of the experiments are performed by a satellite making 200 observations/track, a sidescan capability of 40° and with a RMS-error of 20 m. It is found that the effect of increasing the number of satellite observations from 100 to 200 per orbit is almost negligible. Similarly the effect is small of improving the observations by diminishing the RMS-error below a certain value. An observing system using two satellites 90° out of phase has also been investigated. This is found to imply a substantial improvement. Finally an experiment has been performed using actual SIRS-soundings from NIMBUS IV. With respect to the very small number of soundings at 500 mb, 142 during 48 hours, the result can be regarded as quite satisfactory.
Resumo:
The radiation budget in agricultural crops is very important on the microclimate characterization, on the water losses determination and on dry matter accumulation of vegetation. This work describes the radiation budget determination in a green beans crop (Phaseolus vulgaris L.), in Botucatu, SP, Brazil (22° 54′S; 48° 27′W; 850 m), under two different conditions: the normal field culture and in a polyethylene greenhouse. The densities of fluxes of radiation were used to construct diurnal curves of the components of global radiation (Rg), reflected radiation (Rr), net radiation (Rn).The arithmetic's relations allowed to obtain the components net short-waves (Rc) and net long-waves (Rl). The analysis of these components related to the leaf area index (LAI) in many phenological phases of the culture showed Rg distributed in 68%, 85%, 17% and 66%, 76%, 10% to Rn, Rc and Rl in the internal and external ambients in a polyethylene greenhouse, respectively.
Resumo:
We apply a multiple-time version of the reductive perturbation method to study long waves as governed by the shallow water wave model equation. As a consequence of the requirement of a secularity-free perturbation theory, we show that the well known N-soliton dynamics of the shallow water wave equation, in the particular case of α = 2β, can be reduced to the N-soliton solution that satisfies simultaneously all equations of the Korteweg-de Vries hierarchy.