78 resultados para Loggerhead
Resumo:
Copyright © 2014 Elsevier Science Ltd.
Resumo:
A sub adult Caretta caretta was found on the 23rd August, 2014 ca. 16 nautical miles south off S. Miguel Island, Azores (Northeast Atlantic), with a large pelagic trawl hook inside its mouth. The individual was kept in a basin of sea water and sent by boat to Terceira Island following instructions by the Azores Regional Government via the Environmental Authority in order to be examined by the author and, if possible, undergo the necessary hook removal procedures. In this note, we describe the surgical procedures and how the turtle was evaluated both pre- and post-surgery.
Resumo:
Loggerhead Caretta caretta is now the only species of marine turtle nesting on the island of Sal, Cape Verde Islands. Since 2008, ADTMA - SOS Tartarugas has patrolled all the southern beaches of the island in order to protect nesting females and to collect nesting data. Although hunting is still a major issue, with 90 turtles killed in 2009, habitat loss and light pollution are becoming an ever more serious threat. Construction sites, hotels, apartment buildings and restaurants close to beaches, bright lights and illegal removal of sand are contributing to a marked decrease in the total number of nesting turtles on some beaches. In 2009, beaches on Sal experienced an average increase in nests of 200%, while the beach most affected by construction (Tortuga Beach) saw a decrease of nests of 7.3% (from 19.1% of total number of nests in 2008 to 11.8% in 2010). This beach also recorded a much lower nest to emergence ratio than normal (17.6% of emergences resulting in nests compared to 29.9% in other areas), indicating reluctance to nest due to light pollution and other disturbances.
Resumo:
The isotopic concentrations of carapace scutes, skin, muscle and blood of loggerhead sea turtles (Caretta caretta) from the Balearic Archipelago were analysed to investigate the pattern of variation between tissues and to assess the position of this species in the trophic webs of the Algerian Basin. Skin showed higher δ13C values than muscle or carapace scutes and these showed higher values than blood. Conversely, muscle showed higher δ15N values than skin, skin showed higher values than blood and blood showed higher values than carapace scutes. Dead and live sea turtles from the same habitat did not differ in the concentration of stable isotopes. However, some of the tissues of the turtles caught in drifting longlines in the oceanic realm showed higher δ13C values than those from the turtles caught by hand or in trammel nets over the continental shelf, although they did not differ in the δ15N. Comparison of the concentration of stable isotopes in the turtles with that of other species from several areas of the Algerian Basin revealed that they consumed planktonic prey and that the trophic level of the sea turtles was higher than that of carnivorous cnidarians but lower than that of zooplanktophagous fish and crustaceans.
Resumo:
Exchange of immature loggerhead sea turtles (Caretta caretta) between the northern and southern regions of the western Mediterranean was investigated using data obtained from several Spanish tagging programmes. Tagged turtles ranged in straight carapace length from 23.0 to 74.0 cm. Thirty-six turtles were recaptured after an average interval of 390.5±462.6 days (SD). As the mean dispersal distance (MDD) of a turtle population that spreads over the western Mediterranean would stabilize after 117 days (CI 95%: 98 to 149), two analyses were conducted that included data from turtles recaptured after 98 and 149 days respectively. In both analyses, turtles were recaptured more often than expected in the same region where they had been tagged. No difference was found in either of the two regions between the average distance between the capture and recapture locations and the expected MDD if the turtles were to remain in the region where they were first captured. Turtles recaptured after 15 and 25 days respectively were excluded from the analysis to ensure data independence. The overall evidence indicates that immature turtles exhibit strong site fidelity to certain areas and that there is a strong barrier to dispersal between the northern and southern parts of the western Mediterranean. Therefore, loggerhead turtles in the western Mediterranean should be split into at least two management units.
Resumo:
Reliable estimates of the post-release mortality probability of marine turtles after incidental by-catch are essential for assessing the impact of longline fishing on these species.Large numbers of loggerhead turtles Caretta caretta from rookeries in the northwestern Atlantic Ocean have been by-caught annually in the southwestern Mediterranean Sea since the 1980s, but nothing is known about their post-release mortality probability under natural conditions. Pop-up archival transmitting tags were attached to 26 loggerhead turtles following incidental capture by Spanish longliners. Hooks were not removed, and 40 cm of line was left in place. The post-release mortality probability during the 90 d following release ranged from 0.308 to 0.365, and was independent of hook location. When the post-release mortality probability was combined with previously reported estimates of the mortality probability before hauling, the aggregated by-catch mortality probability ranged from 0.321 to 0.378. Assuming a total annual by-catch of 10656 loggerhead turtles by the Spanish longline fleet operating in the southwestern Mediterranean, by-catch results in 3421 to 4028 turtle deaths annually. This range is equivalent to 8.5−10.1% of the approximately 40000 turtles inhabiting the fishing grounds used by Spanish longliners, most of them from rookeries in the northwestern Atlantic. As a consequence, the accumulated mortality during the oceanic stage is expected to be larger for those loggerhead turtles of Atlantic origin that spend several years in the Mediterranean Sea than for turtles of the same cohort that remain in the Atlantic. For this reason, the Mediterranean can be considered a dead end for loggerhead turtle populations nesting in the Atlantic, although the actual demographic relevance of by-catch mortality of loggerhead turtles in the Mediterranean remains unknown.
Resumo:
Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (~800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology.
Resumo:
Populations on the periphery of a species' range may experience more severe environmental conditions relative to populations closer to the core of the range. As a consequence, peripheral populations may have lower reproductive success or survival, which may affect their persistence. In this study, we examined the influence of environmental conditions on breeding biology and nest survival in a threatened population of Loggerhead Shrikes (Lanius ludovicianus) at the northern limit of the range in southeastern Alberta, Canada, and compared our estimates with those from shrike populations elsewhere in the range. Over the 2-year study in 1992–1993, clutch sizes averaged 6.4 eggs, and most nests were initiated between mid-May and mid-June. Rate of renesting following initial nest failure was 19%, and there were no known cases of double-brooding. Compared with southern populations, rate of renesting was lower and clutch sizes tended to be larger, whereas the length of the nestling and hatchling periods appeared to be similar. Most nest failures were directly associated with nest predators, but weather had a greater direct effect in 1993. Nest survival models indicated higher daily nest survival during warmer temperatures and lower precipitation, which may include direct effects of weather on nestlings as well as indirect effects on predator behavior or food abundance. Daily nest survival varied over the nesting cycle in a curvilinear pattern, with a slight increase through laying, approximately constant survival through incubation, and a decline through the nestling period. Partial brood loss during the nestling stage was high, particularly in 1993, when conditions were cool and wet. Overall, the lower likelihood of renesting, lower nest survival, and higher partial brood loss appeared to depress reproductive output in this population relative to those elsewhere in the range, and may have increased susceptibility to population declines.
Resumo:
The study proposed to describe sexual development in pelagic stage loggerhead sea turtles Caretta caretta and compare this to hatchlings and adults. It is meant as an ontogenic approach, in order to understand reproductive development and population composition and their dynamics in the pelagic environment. The study focused on the pelagic loggerheads that are found in the waters offshore Madeira Island (Portugal) in the North-eastern Atlantic and use it as a developmental habitat. The innovating character of this work relied on the lack of any description regarding the gonad ontogenesis and reproductive development for the pelagic stage in any of the 7 existing sea turtle species, all of them in danger of extinction. Three methods were used to diagnose the sex of each juvenile individual and asses the level of reproductive development: (1) laparoscopy, (2) gonad biopsy and (3) the assessment of two sex steroids circulating levels, namely testosterone and estradiol. In order to cover all life stages and compare data obtained for the juvenile stage, hatchlings and nesting female adults were sampled at the nearest nesting rookery at Boa Vista Island in the Cape Verde Archipelago. Gonads from dead hatchlings were collected for gonad histology and blood was collected from nesting females for sex steroids assessment. Laparoscopies revealed to be a valid sexing method for the juvenile stage, since gonads are morphologically differentiated at these size classes. Moreover, laparoscopy was validated using gonad histology. Gonad histology of juveniles showed that gonads are already completely differentiated into ovaries or testes at the size classes examined, but development seems to be quiescent. Males present already developed seminiferous tubules with spermatogonia lining the interior of the seminiferous tubule. Female gonads present oocytes at different development stages, but only oocytes up to stage III were observed. The maximum oocyte diameter in each individual correlated with body size, suggesting that reproductive development is an on-going process in juvenile females. The circulating levels of both testosterone and estradiol in juveniles of both sexes were very low and consistently lower than the ones observed in the nesting females from Boa Vista Island. No bimodal distribution was found for any of the sex steroids analysed and thus circulating hormone levels were not a reliable tool for sexing juvenile individuals with a non-invasive technique. The ratio testosterone:estradiol did not show a bimodal distribution either. The levels of testosterone correlated with sea surface temperature. The fact that temperatures observed during this study were below 24ºC might have hindered a differential testosterone pattern between juvenile males and females. Sex ratios for this population were generated according to laparoscopy results and compared among years and size classes. An overall sex ratio of 2 females for each male was found, but they varied among size classes but not among years. Possible causes for the sex ratios observed are discussed. This study is a contribution to our knowledge on the pelagic stage of loggerhead turtles, namely on the population structure regarding sex ratio, which is a vital tool for implementing conservation strategies.
Contribution to the chemoreception capacity of juvenile Loggerhead sea turtles (Caretta caretta, L.)
Resumo:
Loggerhead sea turtle juveniles (Caretta caretta), pelagic stage, are found in waters of Madeira archipelago. Pelagic turtles are in the main growth phase of their life cycle and consequently higher energy needs. However, knowledge about the ecology of pelagic loggerhead sea turtles is still quite rudimentary, mainly about the mechanisms that lead them to find food in the vast ocean. Studies with other pelagic species, such as procellariiform birds, revealed that the olfactory system play an important role for the detection of feeding areas, through the detection of concentration peaks of DMS (dimethylsulfide), a scent compound that naturally exists in the marine environment and it is related to areas of high productivity. Based on the assumption that loggerhead sea turtles use a similar mechanism, behavioural experiments were conducted in order to analyze the chemoreception capacity to DMS (airborne chemoreception - theoretically responsible for the long distance detection of areas with food patches; and aquatic chemoreception - theoretically responsible for the short distance detection of preys). The first step was to observe if pelagic loggerheads demonstrate sensitivity to DMS and the second was to verify if they really use the DMS, in natural conditions, as an airborne cue to find areas where food patches might be available. Four juveniles of loggerhead sea turtles were tested in captivity and three wild turtles in the open ocean. The results of airborne chemoreception experiments in captivity revealed that one turtle clearly demonstrated sensitivity to DMS and the sea experiments confirmed this result. However, the experiments were not conclusive on the question whether the pelagic turtles actually use the DMS as an airborne cue to detect long distance food patches. In aquatic chemoreception experiments was not observed sensitivity to DMS by the three sea turtles tested. In the classical conditioning experiment, where DMS and food were given nearly at the same time revealed that after a certain period of time, the sea turtle tested did not associated the DMS stimulus with a possible food reward. The main cause of mortality of loggerhead sea turtles in Madeira waters is due to the accidental capture (bycatch) by deep pelagic longlines fishery which the target species is the black-scabbard (Aphanopus carbo) fish. Chub mackerel (Scomber japonicus) is one of the baits used in this fishery. Aquatic chemoreception experiments were conducted in order to evaluate the attractiveness of the chub mackerel for sea turtles. For the three sea turtles tested, the results showed that in 90% of the cases the sea turtles were extremely attracted by the underwater smell of this fish.