955 resultados para Logarithmic conformal field theory
Resumo:
This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.
Resumo:
This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.
Resumo:
We formally extend the CFT techniques introduced in arXiv: 1505.00963, to phi(2d0/d0-2) theory in d = d(0) dimensions and use it to compute anomalous dimensions near d(0) = 3, 4 in a unified manner. We also do a similar analysis of the O(N) model in three dimensions by developing a recursive combinatorial approach for OPE contractions. Our results match precisely with low loop perturbative computations. Finally, using 3-point correlators in the CFT, we comment on why the phi(3) theory in d(0) = 6 is qualitatively different.
Resumo:
We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS(3) x S-3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU' (2\2).
Resumo:
A quantizable worldsheet action is constructed for the superstring in a super-symmetric plane wave background with Ramond-Ramond flux. The action is manifestly invariant under all isometries of the background and is an exact worldsheet conformal field theory. © SISSA/ISAS 2002.
Resumo:
In questo lavoro abbiamo studiato la presenza di correzioni, dette unusuali, agli stati eccitati delle teorie conformi. Inizialmente abbiamo brevemente descritto l'approccio di Calabrese e Cardy all'entropia di entanglement nei sistemi unidimensionali al punto critico. Questo approccio permette di ottenere la famosa ed universale divergenza logaritmica di questa quantità. Oltre a questo andamento logaritmico son presenti correzioni, che dipendono dalla geometria su cui si basa l'approccio di Calabrese e Cardy, il cui particolare scaling è noto ed è stato osservato in moltissimi lavori in letteratura. Questo scaling è dovuto alla rottura locale della simmetria conforme, che è una conseguenza della criticità del sistema, intorno a particolari punti detti branch points usati nell'approccio di Calabrese e Cardy. In questo lavoro abbiamo dimostrato che le correzioni all'entropia di entanglement degli stati eccitati della teoria conforme, che può anch'essa essere calcolata tramite l'approccio di Calabrese e Cardy, hanno lo stesso scaling di quelle osservate negli stati fondamentali. I nostri risultati teorici sono stati poi perfettamente confermati dei calcoli numerici che abbiamo eseguito sugli stati eccitati del modello XX. Sono stati inoltre usati risultati già noti per lo stato fondamentale del medesimo modello per poter studiare la forma delle correzioni dei suoi stati eccitati. Questo studio ha portato alla conclusione che la forma delle correzioni nei due differenti casi è la medesima a meno di una funzione universale.
Resumo:
Representations of the superalgebra osp(2/2)(k)((1)) and current superalgebra. osp(2/2)k in the standard basis are investigated. All finite-dimensional typical and atypical representations of osp(2/2) are constructed by the vector coherent state method. Primary fields of the non-unitary conformal field theory associated with osp(2/2)(k)((1)) in the standard basis are obtained for arbitrary level k. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The non-semisimple gl(2)k current superalgebra in the standard basis and the corresponding non-unitary conformal field theory are investigated. Infinite families of primary fields corresponding to all finite-dimensional irreducible typical and atypical representations of gl(212) and three (two even and one odd) screening currents of the first kind are constructed explicitly in terms of ten free fields. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS3 × S3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU′(2|2).
Resumo:
In this thesis we study aspects of (0,2) superconformal field theories (SCFTs), which are suitable for compactification of the heterotic string. In the first part, we study a class of (2,2) SCFTs obtained by fibering a Landau-Ginzburg (LG) orbifold CFT over a compact K\"ahler base manifold. While such models are naturally obtained as phases in a gauged linear sigma model (GLSM), our construction is independent of such an embedding. We discuss the general properties of such theories and present a technique to study the massless spectrum of the associated heterotic compactification. We test the validity of our method by applying it to hybrid phases of GLSMs and comparing spectra among the phases. In the second part, we turn to the study of the role of accidental symmetries in two-dimensional (0,2) SCFTs obtained by RG flow from (0,2) LG theories. These accidental symmetries are ubiquitous, and, unlike in the case of (2,2) theories, their identification is key to correctly identifying the IR fixed point and its properties. We develop a number of tools that help to identify such accidental symmetries in the context of (0,2) LG models and provide a conjecture for a toric structure of the SCFT moduli space in a large class of models. In the final part, we study the stability of heterotic compactifications described by (0,2) GLSMs with respect to worldsheet instanton corrections to the space-time superpotential following the work of Beasley and Witten. We show that generic models elude the vanishing theorem proved there, and may not determine supersymmetric heterotic vacua. We then construct a subclass of GLSMs for which a vanishing theorem holds.
Resumo:
This thesis considers non-perturbative methods in quantum field theory with applications to gravity and cosmology. In particular, there are chapters on black hole holography, inflationary model building, and the conformal bootstrap.
Resumo:
Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.
Resumo:
Cette thèse porte sur les phénomènes critiques survenant dans les modèles bidimensionnels sur réseau. Les résultats sont l'objet de deux articles : le premier porte sur la mesure d'exposants critiques décrivant des objets géométriques du réseau et, le second, sur la construction d'idempotents projetant sur des modules indécomposables de l'algèbre de Temperley-Lieb pour la chaîne de spins XXZ. Le premier article présente des expériences numériques Monte Carlo effectuées pour une famille de modèles de boucles en phase diluée. Baptisés "dilute loop models (DLM)", ceux-ci sont inspirés du modèle O(n) introduit par Nienhuis (1990). La famille est étiquetée par les entiers relativement premiers p et p' ainsi que par un paramètre d'anisotropie. Dans la limite thermodynamique, il est pressenti que le modèle DLM(p,p') soit décrit par une théorie logarithmique des champs conformes de charge centrale c(\kappa)=13-6(\kappa+1/\kappa), où \kappa=p/p' est lié à la fugacité du gaz de boucles \beta=-2\cos\pi/\kappa, pour toute valeur du paramètre d'anisotropie. Les mesures portent sur les exposants critiques représentant la loi d'échelle des objets géométriques suivants : l'interface, le périmètre externe et les liens rouges. L'algorithme Metropolis-Hastings employé, pour lequel nous avons introduit de nombreuses améliorations spécifiques aux modèles dilués, est détaillé. Un traitement statistique rigoureux des données permet des extrapolations coïncidant avec les prédictions théoriques à trois ou quatre chiffres significatifs, malgré des courbes d'extrapolation aux pentes abruptes. Le deuxième article porte sur la décomposition de l'espace de Hilbert \otimes^nC^2 sur lequel la chaîne XXZ de n spins 1/2 agit. La version étudiée ici (Pasquier et Saleur (1990)) est décrite par un hamiltonien H_{XXZ}(q) dépendant d'un paramètre q\in C^\times et s'exprimant comme une somme d'éléments de l'algèbre de Temperley-Lieb TL_n(q). Comme pour les modèles dilués, le spectre de la limite continue de H_{XXZ}(q) semble relié aux théories des champs conformes, le paramètre q déterminant la charge centrale. Les idempotents primitifs de End_{TL_n}\otimes^nC^2 sont obtenus, pour tout q, en termes d'éléments de l'algèbre quantique U_qsl_2 (ou d'une extension) par la dualité de Schur-Weyl quantique. Ces idempotents permettent de construire explicitement les TL_n-modules indécomposables de \otimes^nC^2. Ceux-ci sont tous irréductibles, sauf si q est une racine de l'unité. Cette exception est traitée séparément du cas où q est générique. Les problèmes résolus par ces articles nécessitent une grande variété de résultats et d'outils. Pour cette raison, la thèse comporte plusieurs chapitres préparatoires. Sa structure est la suivante. Le premier chapitre introduit certains concepts communs aux deux articles, notamment une description des phénomènes critiques et de la théorie des champs conformes. Le deuxième chapitre aborde brièvement la question des champs logarithmiques, l'évolution de Schramm-Loewner ainsi que l'algorithme de Metropolis-Hastings. Ces sujets sont nécessaires à la lecture de l'article "Geometric Exponents of Dilute Loop Models" au chapitre 3. Le quatrième chapitre présente les outils algébriques utilisés dans le deuxième article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2", constituant le chapitre 5. La thèse conclut par un résumé des résultats importants et la proposition d'avenues de recherche qui en découlent.
Resumo:
We compute the leading corrections to the Bekenstein-Hawking entropy of the Flat Space Cosmological (FSC) solutions in 3D flat spacetimes, which are the flat analogues of the BTZ black holes in AdS(3). The analysis is done by a computation of density of states in the dual 2D Galilean Conformal Field Theory and the answer obtained by this matches with the limiting value of the expected result for the BTZ inner horizon entropy as well as what is expected for a generic thermodynamic system. Along the way, we also develop other aspects of holography of 3D flat spacetimes.
Resumo:
We study the two-alpha-particle (alpha alpha) system in an Effective Field Theory (EFT) for halo-like systems. We propose a power Counting that incorporates the subtle interplay of strong and electromagnetic forces leading to a narrow resonance at an energy of about 0.1 MeV. We investigate the EFT expansion in detail, and compare its results with existing low-energy aa phase shifts and previously determined effective-range parameters. Good description of the data is obtained with a surprising amount of fine-tuning. This scenario can be viewed as an expansion around the limit where, when electromagnetic interactions are turned off, the (8)Be ground state is at threshold and exhibits conformal invariance. We also discuss possible extensions to systems with more than two alpha particles. (c) 2008 Elsevier B.V. All rights reserved.