960 resultados para Locuc control region


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of animals that are decomposing or have been run over or burnt and cannot be visually identified is a problem in the surveillance and control of infectious diseases. Many of these animals are wild and represent a valuable source of information for epidemiologic research as they may be carriers of an infectious agent. This article discusses the results obtained using a method for identifying mammals genetically by sequencing their mitochondrial DNA control region. Fourteen species were analyzed and identified. These included the main reservoirs and transmitters of rabies virus, namely, canids, chiroptera and primates. The results prove that this method of genetic identification is both efficient and simple and that it can be used in the surveillance of infectious diseases which includes mammals in their epidemiologic cycle, such as rabies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine turtles are increasingly being threatened worldwide by anthropogenic activities. Better understanding of their life cycle, behavior and population structure is imperative for the design of adequate conservation strategies. The mtDNA control region is a fast-evolving matrilineal marker that has been employed in the study of marine turtle populations. We developed and tested a simple molecular tracing system for Caretta caretta mtDNA haplotypes by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Using this technique, we were able to distinguish the SSCP patterns of 18 individuals of the haplotypes CC-A4, CC-A24 and CCxLO, which are commonly found in turtles sampled on the Brazilian coast. When we analyzed 15 turtles with previously unknown sequences, we detected two other haplotypes, in addition to the other four. Based on DNA sequencing, they were identified as the CC-A17 and CC-A1 haplotypes. Further analyses were made with the sea turtles, Chelonia mydas (N = 8), Lepidochelys olivacea (N = 3) and Eretmochelys imbricata (N = 1), demonstrating that the PCR-SSCP technique is able to distinguish intra-and interspecific variation in the family Cheloniidae. We found that this technique can be useful for identifying sea turtle mtDNA haplotypes, reducing the need for sequencing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of heteroplasmy (presence of more than one type of mitochondrial DNA in an individual) is used as a tool in human identification studies, anthropology, and most currently in studies that relate heteroplasmy with longevity. The frequency of heteroplasmy and its correlation with age has been analyzed using different tissues such as blood, muscle, heart, bone and brain and in different regions of mitochondrial DNA, but this analysis had never been performed using hair samples. In this study, samples of hair were sequenced in order to ascertain whether the presence or not of heteroplasmy varied according to age, sex and origin of haplogroup individuals. The samples were grouped by age (3 groups), gender (male and female) and haplogroup of origin (European, African and Native American), and analyzed using the chi-square statistical test (chi(2)). Based in statistical results obtained, we conclude that there is no relationship between heteroplasmy and sex, age and haplogroup origin using hair samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The koala, Phascolarctos cinereus, is a geographically widespread species endemic to Australia, with three currently recognized subspecies: P.c. adustus, P.c. cinereus, and P.c. victor. Intraspecific variation in the mitochondrial DNA (mtDNA) control region was examined in over 200 animals from 16 representative populations throughout the species' range. Eighteen different haplotypes were defined in the approximate to 860 bp mtDNA control region as determined by heteroduplex analysis/temperature gradient gel electrophoresis (HDA/TGGE). Any single population typically possessed only one or two haplotypes yielding an average within-population haplotypic diversity of 0.180 +/- 0.003, and nucleotide diversity of 0.16%. Overall, mtDNA control region sequence diversity between populations averaged 0.67%, and ranged from 0% to 1.56%. Nucleotide divergence between populations averaged 0.51%, and ranged from 0% to 1.53%. Neighbour-joining methods revealed limited phylogenetic distinction between geographically distant populations of koalas, and tentative support for a single evolutionarily significant unit (ESU). This is consistent with previous suggestions that the morphological differences formalized by subspecific taxonomy may be interpreted as clinal variation. Significant differentiation in mtDNA-haplotype frequencies between localities suggested that little gene now currently exists among populations. When combined with microsatellite analysis, which has revealed substantial differentiation among koala populations, we conclude that the appropriate short-term management unit (MU) for koalas is the local population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genomic imprinting alterations have been shown to be associated with assisted reproductive technologies (ARTs) in animals. At present, data obtained in humans are inconclusive; however, some epidemiological studies have demonstrated an increased incidence of imprinting disorders in children conceived by ARTs. In the present study, we focused on the effect of ARTs [IVF and intracytoplasmic sperm injection (ICSI)] on the epigenetic reprogramming of the maternally methylated imprinting control region KvDMR1 in clinically normal children. Qualitative and quantitative methylation at KvDMR1 were assessed by the methylation-specific PCR approach and by the methylation-sensitive enzymatic digestion associated with real-time PCR method, respectively. DNA was obtained from peripheral blood of 12/18 and umbilical cord blood and placenta of 6/18 children conceived by IVF or ICSI. The methylation patterns observed in this group were compared with the patterns observed in 30 clinically normal naturally conceived children (negative controls) and in 3 naturally conceived Beckwith-Wiedemann syndrome patients (positive controls). Hypomethylation at KvDMR1 was observed in 3/18 clinically normal children conceived by ARTs (2 conceived by IVF and 1 by ICSI). A discordant methylation pattern was observed in the three corresponding dizygotic twins. Our findings corroborate the hypothesis of vulnerability of maternal imprinting to ARTs. Furthermore, the discordant methylation at KvDMR1 observed between dizygotic twins could be consequent to one of the following possibilities: (i) a differential vulnerability of maternal imprints among different embryos; or (ii) epimutations that occurred during gametogenesis resulting in the production of oocytes without the correct primary imprint at KvDMR1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-nosed bandicoots, Isoodon, have undergone marked range contractions since European colonisation of Australia and are currently divided into many subspecies, the validity of which is debated. Discriminant function analysis of morphology and a phylogeny of Isoodon based on mtDNA control region sequences indicate a clear split between two of the three recognised species, I. macrourus and I. obesulus/auratus. However, while all previously recognised taxa within the I. obesulus/auratus group are morphologically distinct, I. auratus and I. obesulus are not phylogenetically distinct for mtDNA. The genetic divergence between I. obesulus and I. auratus (2.6%) is similar to that found among geographic isolates of the former (I. o. obesulus and I. o. peninsulae: 2.7%). Further, the divergence between geographically close populations of two different species (I. o. obesulus from Western Australia and I. a. barrowensis: 1.2%) is smaller than that among subspecies within I. auratus (I. a. barrowensis and I. auratus from northern Western Australia: 1.7%). A newly discovered population of Isoodon in the Lamb Range, far north Queensland, sympatric with a population of I. m. torosus, is shown to represent a range extension of I. o. peninsulae (350 km). It seems plausible that what is currently considered as two species, I. obesulus and I. auratus, was once one continuous species now represented by isolated populations that have diverged morphologically as a consequence of adaptation to the diverse environments that occur throughout their range. The taxonomy of these populations is discussed in relation to their morphological distinctiveness and genetic similarity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to identify the species origin of an unknown biological sample is relevant in the fields of human and wildlife forensics. However, the detection of several species mixed in the same sample still remains a challenge. We developed and tested a new approach for mammal DNA identification in mixtures of two or three species, based on the analysis of mitochondrial DNA control region interspecific length polymorphism followed by direct sequencing. Contrary to other published methods dealing with species mixtures, our protocol requires a single universal primer pair and is not based on a pre-defined panel of species. Amplicons can be separated either on agarose gels or using CE. The advantages and limitations of the assay are discussed under different conditions, such as variable template concentration, amplicon sizes and size difference among the amplicons present in the mixture. For the first time, this protocol provides a simple, reliable and flexible method for simultaneous identification of multiple mammalian species from mixtures, without any prior knowledge of the species involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY Genomic imprinting is an epigenetic mechanism of transcriptional regulation that ensures restriction of expression of a subset of mammalian genes to a single parental allele. The best studied example of imprinted gene regulation is the Igf2/H19 locus, which is also the most commonly altered by loss of imprinting (LOT) in cancer. LOT is associated with numerous hereditary diseases and several childhood, and adult cancers. Differential expression of reciprocal H19 and 1gf2 alleles in somatic cells depends on the methylation status of the imprinting control region (ICR) which regulates binding of CTCF, an ubiquitously expressed 11-zinc finger protein that binds specifically to non-methylated maternal ICR and thereby attenuates expression of Igf2, while it does not bind to methylated paternal ICR, which enables Igf2 expression. Initial ICR methylation occurs during gametogenesis by an as yet unknown mechanism. The accepted hypothesis is that the event of differential maternal and paternal DNA methylation depends on germ-line specific proteins. Our Laboratory identified a novel 11-zinc-finger protein CTCF-T (also known as CTCFL and BORIS) that is uniquely expressed in the male germ-line and is highly homologous within its zinc-finger region with CTCF. The amino-acid sequences flanking the zinc-finger regions of CTCF and CTCF-T have widely diverged, suggesting that though they could bind to the same DNA targets (ICRs) they are likely to have different functions. Interestingly, expression of CTCF-T and CTCF is mutually exclusive; CTCF-T-positive (CTCF-negative) cells occur in the stage of spermatogenesis that coincides with epigenetic reprogramming, including de novo DNA methylation. In our study we demonstrate the role that CTCF-T plays in genomic imprinting. Here we show that CTCF-T binds in vivo to the ICRs of Igf2/H19 and Dlk/Gt12 imprinted genes. In addition, we identified two novel proteins interacting with CTCF-T: a protein arginine methyltransferase PRMT7 and an arginine-rich histone H2A variant that we named trH2A. These interactions were confirmed and show that the two proteins interact with the amino-teiminal region of CTCF-T. Additionally, we show interaction of the amino- terminal region of CTCF-T with histones H1, H2A and H3. These results suggest that CTCF-T is a sequence-specific DNA (ICR) binding protein that associates with histones and recruits PRMT7. Interestingly, PRMT7 has a histone-methyltransferase activity. It has been shown that histone methylation can mark chromatin regions thereby directing DNA-methylation; thus, our hypothesis is that the CTCF-T protein-scaffold directs PRMT7 to methylate histone(s) assembled on ICRs, which marks chromatin for the recruitment of the de novo DNA methyltransferases to methylate DNA. To test this hypothesis, we developed an in vivo DNA-methylation assay using Xenopus laevis' oocytes, where H19 ICR and different expression cDNAs, including CTCF-T, PRMT7 and the de novo DNA methyltransferases (Dnmt3a, Dnmt3b and Dnmt3L) are microinjected into the nucleus. The methylation status of CpGs within the H19 ICR was analysed 48 or 72 hours after injection. Here we demonstrate that CpGs in the ICR are methylated in the presence of both CTCF-T and PRMT7, while control oocytes injected only with ICR did not show any methylation. Additionally, we showed for the first time that Dnmt3L is crucial for the establishment of the imprinting marks on H19 ICR. Moreover, we confirmed that Dnmt3a and Dnmt3b activities are complementary. Our data indicate that all three Dnmt3s are important for efficient de novo DNA methylation. In conclusion, we propose a mechanism for the establishment of de novo imprinting marks during spermatogenesis: the CTCF-T/PRMT7 protein complex directs histone methylation leading to sequence-specific de novo DNA methylation of H19 ICR. RESUME L'empreinte génomique parentale est un mécanisme épigénétique de régulation transcriptionelle qui se traduit par une expression différentielle des deux allèles de certains gènes, en fonction de leur origine parentale. L'exemple le mieux caractérisé de gènes soumis à l'empreinte génomique parentale est le locus Igf2/H19, qui est aussi le plus fréquemment altéré par relaxation d'empreinte (en anglais: loss of imprinting, LOI) dans les cancers. Cette relaxation d'empreinte est aussi associée à de nombreuses maladies héréditaires, ainsi qu'à de nombreux cancers chez l'enfant et l'adulte. Dans les cellules somatiques, les différences d'expression des allèles réciproques H19 et Ig12 est sous le contrôle d'une région ICR (Imprinting Control Region). La méthylation de cette région ICR régule l'ancrage de la protéine à douze doigts de zinc CTCF, qui se lie spécifiquement à l'ICR maternel non-méthylé, atténuant ainsi l'expression de Igf2, alors qu'elle ne s'ancre pas à l'ICR paternel méthyle. Le mécanisme qui accompagne la méthylation initiale de la région ICR durant la gamétogenèse n'a toujours pas été élucidé. L'hypothèse actuelle propose que la différence de méthylation entre l'ADN maternel et paternel résulte de l'expression de protéines propres aux zones germinales. Notre laboratoire a récemment identifié une nouvelle protéine à douze doigts de zinc, CTCF-T (aussi dénommée CTCFL et BORRIS), qui est exprimée uniquement dans les cellules germinales mâles, dont la partie à douze doigts de zinc est fortement homologue à la protéine CTCF. La séquence d'acides aminés de part et d'autre de cette région est quant à elle très divergente, ce qui implique que CTCF-T se lie sans doute au même ADN cible que CTCF, mais possède des fonctions différentes. De plus, l'expression de CTCF-T et de CTCF s'oppose mutuellement; l'expression de la protéine CTCF-T (cellules CTCF-T positives, CTCF negatives) qui a lieu pendant la spermatogenèse coïncide avec la reprogrammation épigénétique, notamment la méthylation de novo de l'ADN. La présente étude démontre le rôle essentiel joué par la protéine CTCF-T dans l'acquisition de l'empreinte génomique parentale. Nous montrons ici que CTCF-T s'associe in vivo avec les régions ICR des loci Igf2/H19 et Dlk/Gt12. Nous avons également identifié deux nouvelles protéines qui interagissent avec CTCF-T : une protéine arginine méthyl transférase PRMT7, et un variant de l'histone H2A, riche en arginine, que nous avons dénommé trH2A. Ces interactions ont été analysées plus en détail, et confinnent que ces deux protéines s'associent avec la région N-terminale de CTCF-T. Aussi, nous présentons une interaction de la région N-terminale de CTCF-T avec les histones H1, H2, et H3. Ces résultats suggèrent que CTCF-T est une protéine qui se lie spécifiquement aux régions ICR, qui s'associe avec différents histones et qui recrute PRMT7. PRMT7 possède une activité méthyl-tansférase envers les histones. Il a été montré que la méthylation des histones marque certains endroits de la chromatine, dirigeant ainsi la méthylation de l'ADN. Notre hypothèse est donc la suivante : la protéine CTCF-T sert de base qui dirige la méthylation des histones par PRMT7 dans les régions ICR, ce qui contribue à marquer la chromatine pour le recrutement de nouvelles méthyl transférases pour méthyler l'ADN. Afin de valider cette hypothèse, nous avons développé un système de méthylation de l'ADN in vivo, dans des oeufs de Xenopus laevis, dans le noyau desquels nous avons mico-injecté la région ICR du locus H19, ainsi que différents vecteurs d'expression pour CTCF-T, PRMT7, et les de novo méthyl transférases (Dnmt3a, Dnmt3b et Dnmt3L). Les CpGs méthyles de la région ICR du locus H19 ont été analysé 48 et 72 heures après l'injection. Cette technique nous a permis de démontrer que les CpGs de la région ICR sont méthyles en présence de CTCF-T et de PRMT7, tandis que les contrôles injectés seulement avec la région ICR ne présentent aucun signe de méthylation. De plus, nous démontrons pour la première fois que la protéine méthyl transférase Dnmt3L est déterminant pour l'établissement de l'empreinte génomique parentale au niveau de la région ICR du locus H19. Aussi, nous confirmons que les activités méthyl transférases de Dnmt3a et Dnmt3b sont complémentaires. Nos données indiquent que les trois protéines Dnmt3 sont impliquées dans la méthylation de l'ADN. En conclusion, nous proposons un mécanisme responsable de la mise en place de nouvelles empreintes génomiques pendant la spermatogenèse : le complexe protéique CTCF-T/PRMT7 dirige la méthylation des histones aboutissant à la méthylation de novo de l'ADN au locus H19.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular species identification in mixed or contaminated biological material has always been problematic. We developed a simple and accurate method for mammal DNA identification in mixtures, based on interspecific mitochondrial DNA control region length polymorphism. Contrary to other published methods dealing with species mixtures, our protocol requires a single universal primer pair and amplification step, and is not based on a pre-defined panel of species. This protocol has been routinely employed by our laboratory for species identification in dozens of human and animal forensic caseworks. Six representative forensic caseworks involving the specific identification of mixed animal samples are reported in this paper, in order to demonstrate the applicability and usefulness of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Silver-Russell syndrome (SRS) is a genetically and clinically heterogeneous disease. Although no protein coding gene defects have been reported in SRS patients, approximately 50% of SRS patients carry epimutations (hypomethylation) at the IGF2/H19 imprinting control region 1 (ICR1). Proper methylation at ICR1 is crucial for the imprinted expression of IGF2, a fetal growth factor. CTCFL, a testis-specific protein, has recently been proposed to play a role in the establishment of DNA methylation at the murine equivalent of ICR1. A screen was undertaken to assess whether CTCFL is mutated in SRS patients with hypomethylation, to explore a link between the observed epimutations and a genetic cause of the disease. METHODOLOGY/PRINCIPAL FINDINGS: DNA was obtained from 36 SRS patients with hypomethylation at ICR1. All CTCFL coding exons were sequenced and analyzed for duplications/deletions using both multiplex ligation-dependent probe amplification, with a custom CTCFL probe set, and genomic qPCR. Novel SNP alleles were analyzed for potential differential splicing in vitro utilizing a splicing assay. Neither mutations of CTCFL nor duplications/deletions were observed. Five novel SNPs were identified and have been submitted to dbSNP. In silico splice prediction suggested one novel SNP, IVS2-66A>C, activated a cryptic splice site, resulting in aberrant splicing and premature termination. In vitro splicing assays did not confirm predicted aberrant splicing. CONCLUSIONS/SIGNIFICANCE: As no mutations were detected at CTCFL in the patients examined, we conclude that genetic alterations of CTCFL are not responsible for the SRS hypomethylation. We suggest that analysis of other genes involved in the establishment of DNA methylation at imprinted genes, such as DNMT3A and DNMT3L, may provide insight into the genetic cause of hypomethylation in SRS patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete mitochondrial DNA (mtDNA) control region was amplified and directly sequenced in two species of shrew, Crocidura russula and Sorex araneus (Insectivora, Mammalia). The general organization is similar to that found in other mammals: a central conserved region surrounded by two more variable domains. However, we have found in shrews the simultaneous presence of arrays of tandem repeats in potential locations where repeats tend to occur separately in other mammalian species. These locations correspond to regions which are associated with a possible interruption of the replication processes, either at the end of the three-stranded D-loop structure or toward the end of the heavy-strand replication. In the left domain the repeated sequences (R1 repeats) are 78 bp long, whereas in the right domain the repeats are 12 bp long in C. russula and 14 bp long in S. araneus (R2 repeats). Variation in the copy number of these repeated sequences results in mtDNA control region length differences. Southern blot analysis indicates that level of heteroplasmy (more than one mtDNA form within an individual) differs between species. A comparative study of the R2 repeats in 12 additional species representing three shrew subfamilies provides useful indications for the understanding of the origin and the evolution of these homologous tandemly repeated sequences. An asymmetry in the distribution of variants within the arrays, as well as the constant occurrence of shorter repeated sequences flanking only one side of the R2 arrays, could be related to asymmetry in the replication of each strand of the mtDNA molecule. The pattern of sequence and length variation within and between species, together with the capability of the arrays to form stable secondary structures, suggests that the dominant mechanism involved in the evolution of these arrays in unidirectional replication slippage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South American sea lion, Otaria flavescens, is widely distributed along the Pacific and Atlantic coasts of South America. However, along the Brazilian coast, there are only two nonbreeding sites for the species (Refúgio de Vida Silvestre da Ilha dos Lobos and Refúgio de Vida Silvestre do Molhe Leste da Barra do Rio Grande), both in Southern Brazil. In this region, the species is continuously under the effect of anthropic activities, mainly those related to environmental contamination with organic and inorganic chemicals and fishery interactions. This paper reports, for the first time, the genetic diversity of O. flavescens found along the Southern Brazilian coast. A 287-bp fragment of the mitochondrial DNA control region (D-loop) was analyzed. Seven novel haplotypes were found in 56 individuals (OFA1-OFA7), with OFA1 being the most frequent (47.54%). Nucleotide diversity was moderate (π = 0.62%) and haplotype diversity was relatively low (67%). Furthermore, the median joining network analysis indicated that Brazilian haplotypes formed a reciprocal monophyletic clade when compared to the haplotypes from the Peruvian population on the Pacific coast. These two populations do not share haplotypes and may have become isolated some time back. Further genetic studies covering the entire species distribution are necessary to better understand the biological implications of the results reported here for the management and conservation of South American sea lions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to methylated cytosines (5-mCs), hydroxymethylcytosines (5-hmCs) are present in CpG dinucleotide-enriched regions and some transcription regulator binding sites. Unlike methylation, hydroxymethylation does not result in silencing of gene expression, and the most commonly used methods to study methylation, such as techniques based on restriction enzymatic digestion and/or bisulfite modification, are unable to distinguish between them. Genomic imprinting is a process of gene regulation where only one member of an allelic pair is expressed depending on the parental origin. Chromosome 11p15.5 has an imprinting control region (ICR2) that includes a differentially methylated region (KvDMR1) that guarantees parent-specific gene expression. The objective of the present study was to determine the presence of 5-hmC at the KvDMR1 in human placentas. We analyzed 16 third-trimester normal human placentas (chorionic villi). We compared two different methods based on real-time PCR after enzymatic digestion. The first method distinguished methylation from hydroxymethylation, while the other method did not. Unlike other methylation studies, subtle variations of methylation in ICRs could represent a drastic deregulation of the expression of imprinted genes, leading to important phenotypic consequences, and the presence of hydroxymethylation could interfere with the results of many studies. We observed agreement between the results of both methods, indicating the absence of hydroxymethylation at the KvDMR1 in third-trimester placentas. To the best of our knowledge, this is the first study describing the investigation of hydroxymethylation in human placenta using a genomic imprinting model.