978 resultados para Locomotor activity
Resumo:
The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.
Resumo:
In this paper we report findings on the presence of circadian rhythms in six species of cave-dwelling fishes from Brazil. Locomotor activity of islolated individuals was automatically recorded for 10 consecutive days under constant darkness. The species tested show varied degrees of specialization to subterranean life and we found varying degrees of the circadian components of locomotor activity as measured by the periodogram algorhythm of Lomb-Scargle. Both the presence and robustness of the circadian components seem to vary according to the degree of specialization to subterranean life, the more specialized, the less circadian rhythmicity was detected.
Resumo:
Dengue is one of the world’s most important mosquito-borne diseases and is usually transmitted by one of two vector species: Aedes aegypti or Aedes albopictus . These two diurnal mosquitoes are frequently found coexisting in similar habitats, enabling interactions between adults, such as cross-mating. The objective of this study was to assess cross-mating between Ae. aegypti females and Ae. albopictus males under artificial conditions and evaluate the locomotor activity of Ae. aegypti virgin females injected with male accessory gland (MAG) homogenates to infer the physiological and behavioural responses to interspecific mating. After seven days of exposure, 3.3-16% of Ae. aegypti females mated with Ae. albopictus males. Virgin Ae. aegypti females injected with conspecific and heterospecific MAGs showed a general decrease in locomotor activity compared to controls and were refractory to mating with conspecific males. The reduction in diurnal locomotor activity induced by injections of conspecific or heterospecific MAGs is consistent with regulation of female reproductive activities by male substances, which are capable of sterilising female Ae. aegypti through satyrisation by Ae. albopictus .
Resumo:
The widespread consumption of anorectics and combined anorectic + alcohol misuse are problems in Brazil. In order to better understand the interactive effects of ethanol (EtOH) and diethylpropion (DEP) we examined the locomotion-activating effects of these drugs given alone or in combination in mice. We also determined whether this response was affected by dopamine (DA) or opioid receptor antagonists. A total of 160 male Swiss mice weighing approximately 30 g were divided into groups of 8 animals per group. The animals were treated daily for 7 consecutive days with combined EtOH + DEP (1.2 g/kg and 5.0 mg/kg, ip), EtOH (1.2 g/kg, ip), DEP (5.0 mg/kg, ip) or the control solution coadministered with the DA antagonist haloperidol (HAL, 0.075 mg/kg, ip), the opioid antagonist naloxone (NAL, 1.0 mg/kg, ip), or vehicle. On days 1, 7 and 10 after the injections, mice were assessed in activity cages at different times (15, 30, 45 and 60 min) for 5 min. The acute combination of EtOH plus DEP induced a significantly higher increase in locomotor activity (day 1: 369.5 ± 34.41) when compared to either drug alone (day 1: EtOH = 232.5 ± 23.79 and DEP = 276.0 ± 12.85) and to control solution (day 1: 153.12 ± 7.64). However, the repeated administration of EtOH (day 7: 314.63 ± 26.79 and day 10: 257.62 ± 29.91) or DEP (day 7: 309.5 ± 31.65 and day 10: 321.12 ± 39.24) alone or in combination (day 7: 459.75 ± 41.28 and day 10: 427.87 ± 33.0) failed to induce a progressive increase in the locomotor response. These data demonstrate greater locomotion-activating effects of the EtOH + DEP combination, probably involving DA and/or opioid receptor stimulation, since the daily pretreatment with HAL (day 1: EtOH + DEP = 395.62 ± 11.92 and EtOH + DEP + HAL = 371.5 ± 6.76; day 7: EtOH + DEP = 502.5 ± 42.27 and EtOH + DEP + HAL = 281.12 ± 16.08; day 10: EtOH + DEP = 445.75 ± 16.64 and EtOH + DEP + HAL = 376.75 ± 16.4) and NAL (day 1: EtOH + DEP = 553.62 ± 38.15 and EtOH + DEP + NAL = 445.12 ± 55.67; day 7: EtOH + DEP = 617.5 ± 38.89 and EtOH + DEP + NAL = 418.25 ± 61.18; day 10: EtOH + DEP = 541.37 ± 32.86 and EtOH + DEP + NAL = 427.12 ± 51.6) reduced the locomotor response induced by combined administration of EtOH + DEP. These findings also suggest that a major determinant of combined anorectic-alcohol misuse may be the increased stimulating effects produced by the combination.
Resumo:
Heart rate (HR) and systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure were recorded by biotelemetry in nine conscious unrestrained sloths for 1 min every 15 min over a 24-h period. The animals were allowed to freely move in an acoustically isolated and temperature-controlled (24 ± 1ºC) experimental room with light-dark cycle (12/12 h). Behavior was closely monitored through a unidirectional visor and classified as resting (sitting or suspended), feeding (chewing and swallowing embauba leaves, Cecropia adenops), or locomotor activity around the tree trunk or on the room floor. Locomotor activity caused statistically significant increases in SBP (+8%, from 121 ± 22 to 131 ± 18 mmHg), DBP (+7%, from 86 ± 17 to 92 ± 10 mmHg), MBP (+8%, from 97 ± 19 to 105 ± 12 mmHg), and HR (+14%, from 84 ± 15 to 96 ± 15 bpm) compared to resting values, indicating a possible major influence of the autonomic nervous system on the modulation of cardiac function during this behavior. During feeding, the increase in blood pressure was even higher (SBP +27%, from 119 ± 21 to 151 ± 21 mmHg; DBP +21%, from 85 ± 16 to 103 ± 15 mmHg; MBP +24%, from 96 ± 17 to 119 ± 17 mmHg), while HR remained at 14% (from 84 ± 15 to 96 ± 10 bpm) above resting values. The proportionally greater increase in blood pressure than in HR during feeding suggests an increase in peripheral vascular resistance as part of the overall response to this behavior.
Resumo:
The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.
Resumo:
The N-acylhydrazone (NAH) analogues N-methyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-785) and N-benzyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-786) were prepared from 2-thienylidene 3,4-methylenedioxybenzoylhydrazine (LASSBio-294). The ability of LASSBio-785 and LASSBio-786 to decrease central nervous system activity was investigated in male Swiss mice. LASSBio-785 or LASSBio-786 (30 mg/kg, ip) reduced locomotor activity from 209 ± 26 (control) to 140 ± 18 (P < 0.05) or 146 ± 15 crossings/min (P < 0.05), respectively. LASSBio-785 (15 or 30 mg/kg, iv) also reduced locomotor activity from 200 ± 15 to 116 ± 29 (P < 0.05) or 60 ± 16 crossings/min (P < 0.01), respectively. Likewise, LASSBio-786 (15 or 30 mg/kg, iv) reduced locomotor activity from 200 ± 15 to 127 ± 10 (P < 0.01) or 96 ± 14 crossings/min (P < 0.01), respectively. Pretreatment with flumazenil (20 mg/kg,ip) prevented the locomotor impairment induced by NAH analogues (15 mg/kg, iv), providing evidence that the benzodiazepine (BDZ) receptor is involved. This finding was supported by the structural similarity of NAH analogues to midazolam. However, LASSBio-785 showed weak binding to the BDZ receptor. LASSBio-785 or LASSBio-786 (30 mg/kg,ip, n = 10) increased pentobarbital-induced sleeping time from 42 ± 5 (DMSO) to 66 ± 6 (P < 0.05) or 75 ± 4 min (P < 0.05), respectively. The dose required to achieve 50% hypnosis (HD50) following iv injection of LASSBio-785 or LASSBio-786 was 15.8 or 9.5 mg/kg, respectively. These data suggest that both NAH analogues might be useful for the development of new neuroactive drugs for the treatment of insomnia or for use in conjunction with general anesthesia.
Resumo:
Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP) channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor) has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training.
Resumo:
Drug abuse is a concerning health problem in adults and has been recognized as a major problem in adolescents. induction of immediate-early genes (IEG), such as c-Fos or Egr-1, is used to identify brain areas that become activated in response to various stimuli, including addictive drugs. It is known that the environment can alter the response to drugs of abuse. Accordingly, environmental cues may trigger drug-seeking behavior when the drug is repeatedly administered in a given environment. The goal of this study was first to examine for age differences in context-dependent sensitization and then evaluate IEG expression in different brain regions. For this, groups of mice received i.p. ethanol (2.0 g/kg) or saline in the test apparatus, while other groups received the solutions in the home cage, for 15 days. One week after this treatment phase, mice were challenged with ethanol injection. Acutely, ethanol increased both locomotor activity and IEG expression in different brain regions, indistinctly, in adolescent and adult mice. However, adults exhibited a typical context-dependent behavioral sensitization following repeated ethanol treatment, while adolescent mice presented gradually smaller locomotion across treatment, when ethanol was administered in a paired regimen with environment. Conversely, ethanol-treated adolescents expressed context-independent behavioral sensitization. Overall, repeated ethanol administration desensitized IEG expression in both adolescent and adult mice, but this effect was greatest in the nucleus accumbens and prefrontal cortex of adolescents treated in the context-dependent paradigm. These results suggest developmental differences in the sensitivity to the conditioned and unconditioned locomotor effects of ethanol. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Caffeine and femproporex are psychostimulants drugs widely consumed in Brazil. Behavioral sensitization is defined as an augmentation in the behavioral effect of a psychostimulant upon re-administration. Repeated administration of a psychostimulant produces behavioral sensitization to that drug and cross-sensitization to other drugs. We investigated whether repeated administration of caffeine increases femproporex-induced locomotor activity in adolescent and adult rats. Forty-eight adolescent (postnatal day 27) and 32 adult (postnatal day 60) received i.p. injections of caffeine (CAF) (10.0 mg/kg) (adolescent N = 24; adult N = 16)) or saline (adolescent N = 24; adult N = 16) once daily for ten days. Three days following the last injection each group was subdivided and received a challenge injection of femproporex (2.0 mg/kg i.p) or saline. Locomotor activity was recorded for 1 hour in 5 - minute intervals. Our results showed that repeated injections of caffeine increased femproporex - induced locomotor activity in adult and adolescent rats.
Resumo:
Adolescents differ from adults in their acute sensitivity to several drugs of abuse, but little is known about the long-term neurobehavioral effects of adolescent drug exposure. To explore this further, we evaluated the locomotor responses to repeated cocaine administration in adolescent and adult male DBA/2J mice and alterations in extracellular levels of dopamine (DA) and glutamate (GLU) in the nucleus accumbens (NAc) in response to a subsequent cocaine challenge. Adolescent and adult mice were treated daily with saline or cocaine (10 mg/kg, i.p) for 9 consecutive days. Ten days following the last injection, animals were implanted with microdialysis probes and 24 h later microdialysis samples were collected before and after an acute cocaine challenge. Adolescents but not adults demonstrated development of behavioral sensitization to cocaine. Microdialysis procedures revealed that cocaine-treated mice displayed greater peak increases in extracellular DA in response to a subsequent cocaine challenge as compared to saline-treated mice, in contrast with lower peak increases in extracellular GLU. While adults exhibited greater peaks in extracellular DA in response to cocaine than adolescents did, adolescent mice presented a more rapid onset of peak extracellular DA levels than adults. Our results indicate differences in the behavioral and neurochemical responses to cocaine in adolescent versus adult mice, which may be relevant to the increased risk of developing addiction in humans who are exposed to drugs of abuse during adolescence. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Caffeine is the legal stimulant consumed most extensively by the human world population and may be found eventually in the urine and/or blood of race horses, the fact that caffeine is in foods led us to determine the highest no-effect dose (HNED) of caffeine on the spontaneous locomotor activity of horses and then to quantify this substance in urine until it disappeared. We built two behavioural stalls equipped with juxtaposed photoelectric sensors that emit infrared beams that divide the stall into nine sectors in a 'tic-tac-toe' fashion. Each time a beam was interrupted by a leg of the horse, a pulse was generated; the pulses were counted at 5-min intervals and stored by a microcomputer. Environmental effects were minimized by installing exhaust fans producing white noise that obscured outside sounds. One-way observation windows prevented the animals from seeing outside. The sensors were turned on 45 min before drug administration (saline control or caffeine), the animals were observed for up to 8 h after i.v. administration of 2.0, 2.5, 3.0 or 5.0 mg caffeine kg(-1). The HNED of caffeine for stimulation of the spontaneous locomotor activity of horses was 2.0 mg kg(-1). The quantification of caffeine in urine and plasma samples was done by gradient HPLC with UV detection. The no-effect threshold should not be greater than 2.0 mug caffeine ml(-1) plasma or 5.0 mug caffeine ml(-1) urine. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
We examined nicotine-induced locomotion and increase in corticosterone plasma levels in adolescent and adult animals exposed to chronic restraint stress. Adolescent [postnatal day (P) 28-37] and adult (P60-67) rats were restrained for 2 hours once daily for 7 days. Three days after the last exposure to stress, the animals were challenged with saline or nicotine (0.4 mg/kg subcutaneously). Nicotine-induced locomotion was recorded in an activity cage. Trunk blood samples were collected in a subset of adolescent and adult rats and plasma corticosterone levels were determined by radioimmunoassay. Exposure to stress did not affect the nicotine-induced locomotor- or corticosterone-activating effects in both ages.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)