944 resultados para Localisation sonore
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Pouvoir déterminer la provenance des sons est fondamental pour bien interagir avec notre environnement. La localisation auditive est une faculté importante et complexe du système auditif humain. Le cerveau doit décoder le signal acoustique pour en extraire les indices qui lui permettent de localiser une source sonore. Ces indices de localisation auditive dépendent en partie de propriétés morphologiques et environnementales qui ne peuvent être anticipées par l'encodage génétique. Le traitement de ces indices doit donc être ajusté par l'expérience durant la période de développement. À l’âge adulte, la plasticité en localisation auditive existe encore. Cette plasticité a été étudiée au niveau comportemental, mais on ne connaît que très peu ses corrélats et mécanismes neuronaux. La présente recherche avait pour objectif d'examiner cette plasticité, ainsi que les mécanismes d'encodage des indices de localisation auditive, tant sur le plan comportemental, qu'à travers les corrélats neuronaux du comportement observé. Dans les deux premières études, nous avons imposé un décalage perceptif de l’espace auditif horizontal à l’aide de bouchons d’oreille numériques. Nous avons montré que de jeunes adultes peuvent rapidement s’adapter à un décalage perceptif important. Au moyen de l’IRM fonctionnelle haute résolution, nous avons observé des changements de l’activité corticale auditive accompagnant cette adaptation, en termes de latéralisation hémisphérique. Nous avons également pu confirmer l’hypothèse de codage par hémichamp comme représentation de l'espace auditif horizontal. Dans une troisième étude, nous avons modifié l’indice auditif le plus important pour la perception de l’espace vertical à l’aide de moulages en silicone. Nous avons montré que l’adaptation à cette modification n’était suivie d’aucun effet consécutif au retrait des moulages, même lors de la toute première présentation d’un stimulus sonore. Ce résultat concorde avec l’hypothèse d’un mécanisme dit de many-to-one mapping, à travers lequel plusieurs profils spectraux peuvent être associés à une même position spatiale. Dans une quatrième étude, au moyen de l’IRM fonctionnelle et en tirant profit de l’adaptation aux moulages de silicone, nous avons révélé l’encodage de l’élévation sonore dans le cortex auditif humain.
Resumo:
Pouvoir déterminer la provenance des sons est fondamental pour bien interagir avec notre environnement. La localisation auditive est une faculté importante et complexe du système auditif humain. Le cerveau doit décoder le signal acoustique pour en extraire les indices qui lui permettent de localiser une source sonore. Ces indices de localisation auditive dépendent en partie de propriétés morphologiques et environnementales qui ne peuvent être anticipées par l'encodage génétique. Le traitement de ces indices doit donc être ajusté par l'expérience durant la période de développement. À l’âge adulte, la plasticité en localisation auditive existe encore. Cette plasticité a été étudiée au niveau comportemental, mais on ne connaît que très peu ses corrélats et mécanismes neuronaux. La présente recherche avait pour objectif d'examiner cette plasticité, ainsi que les mécanismes d'encodage des indices de localisation auditive, tant sur le plan comportemental, qu'à travers les corrélats neuronaux du comportement observé. Dans les deux premières études, nous avons imposé un décalage perceptif de l’espace auditif horizontal à l’aide de bouchons d’oreille numériques. Nous avons montré que de jeunes adultes peuvent rapidement s’adapter à un décalage perceptif important. Au moyen de l’IRM fonctionnelle haute résolution, nous avons observé des changements de l’activité corticale auditive accompagnant cette adaptation, en termes de latéralisation hémisphérique. Nous avons également pu confirmer l’hypothèse de codage par hémichamp comme représentation de l'espace auditif horizontal. Dans une troisième étude, nous avons modifié l’indice auditif le plus important pour la perception de l’espace vertical à l’aide de moulages en silicone. Nous avons montré que l’adaptation à cette modification n’était suivie d’aucun effet consécutif au retrait des moulages, même lors de la toute première présentation d’un stimulus sonore. Ce résultat concorde avec l’hypothèse d’un mécanisme dit de many-to-one mapping, à travers lequel plusieurs profils spectraux peuvent être associés à une même position spatiale. Dans une quatrième étude, au moyen de l’IRM fonctionnelle et en tirant profit de l’adaptation aux moulages de silicone, nous avons révélé l’encodage de l’élévation sonore dans le cortex auditif humain.
Resumo:
Competent navigation in an environment is a major requirement for an autonomous mobile robot to accomplish its mission. Nowadays, many successful systems for navigating a mobile robot use an internal map which represents the environment in a detailed geometric manner. However, building, maintaining and using such environment maps for navigation is difficult because of perceptual aliasing and measurement noise. Moreover, geometric maps require the processing of huge amounts of data which is computationally expensive. This thesis addresses the problem of vision-based topological mapping and localisation for mobile robot navigation. Topological maps are concise and graphical representations of environments that are scalable and amenable to symbolic manipulation. Thus, they are well-suited for basic robot navigation applications, and also provide a representational basis for the procedural and semantic information needed for higher-level robotic tasks. In order to make vision-based topological navigation suitable for inexpensive mobile robots for the mass market we propose to characterise key places of the environment based on their visual appearance through colour histograms. The approach for representing places using visual appearance is based on the fact that colour histograms change slowly as the field of vision sweeps the scene when a robot moves through an environment. Hence, a place represents a region of the environment rather than a single position. We demonstrate in experiments using an indoor data set, that a topological map in which places are characterised using visual appearance augmented with metric clues provides sufficient information to perform continuous metric localisation which is robust to the kidnapped robot problem. Many topological mapping methods build a topological map by clustering visual observations to places. However, due to perceptual aliasing observations from different places may be mapped to the same place representative in the topological map. A main contribution of this thesis is a novel approach for dealing with the perceptual aliasing problem in topological mapping. We propose to incorporate neighbourhood relations for disambiguating places which otherwise are indistinguishable. We present a constraint based stochastic local search method which integrates the approach for place disambiguation in order to induce a topological map. Experiments show that the proposed method is capable of mapping environments with a high degree of perceptual aliasing, and that a small map is found quickly. Moreover, the method of using neighbourhood information for place disambiguation is integrated into a framework for topological off-line simultaneous localisation and mapping which does not require an initial categorisation of visual observations. Experiments on an indoor data set demonstrate the suitability of our method to reliably localise the robot while building a topological map.
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in one dimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.
Resumo:
This paper describes the current state of RatSLAM, a Simultaneous Localisation and Mapping (SLAM) system based on models of the rodent hippocampus. RatSLAM uses a competitive attractor network to fuse visual and odometry information. Energy packets in the network represent pose hypotheses, which are updated by odometry and can be enhanced or inhibited by visual input. This paper shows the effectiveness of the system in real robot tests in unmodified indoor environments using a learning vision system. Results are shown for two test environments; a large corridor loop and the complete floor of an office building.
Resumo:
This paper presents a vision-based method of vehicle localisation that has been developed and tested on a large forklift type robotic vehicle which operates in a mainly outdoor industrial setting. The localiser uses a sparse 3D edgemap of the environment and a particle filter to estimate the pose of the vehicle. The vehicle operates in dynamic and non-uniform outdoor lighting conditions, an issue that is addressed by using knowledge of the scene to intelligently adjust the camera exposure and hence improve the quality of the information in the image. Results from the industrial vehicle are shown and compared to another laser-based localiser which acts as a ground truth. An improved likelihood metric, using peredge calculation, is presented and has shown to be 40% more accurate in estimating rotation. Visual localization results from the vehicle driving an arbitrary 1.5km path during a bright sunny period show an average position error of 0.44m and rotation error of 0.62deg.
Resumo:
Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.