997 resultados para Local Scour


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On March 11 2011, an exceptionally large tsunami event was triggered by a massive earthquake offshore, the northeast coast of Japan, which affected coastal infrastructure such as seawalls, coastal dikes and breakwaters in the Tohoku region. Such infrastructure was built to protect against the Level 1 tsunamis that previously hit the region, but not for events as significant as the 2011 Tohoku tsunami, which was categorized as a Level 2 tsunami [Shibayama et al. 2013]. The failure mechanisms of concrete-armoured dikes, breakwaters and seawalls due to Level 2 tsunamis are still not fully understood by researchers and engineers. This paper investigates the failure modes and mechanisms of damaged coastal structures in Miyagi and Fukushima Prefectures, following the authors' post-disaster field surveys carried out between 2011 and 2013. Six significant failure mechanisms were identified for the coastal dikes and seawalls affected by this tsunami: 1) Leeward toe scour failure, 2) Crown armour failure, 3) Leeward slope armour failure, 4) Seaward toe and armour failure, 5) Overturning failure, and 6) Parapet wall failure, in which leeward toe scour being recognized as the major failure mechanism in most surveyed locations. The authors also propose a simple practical mathematical model for predicting the scour depth at the leeward toe of the coastal dikes, by considering the effects of the tsunami hydrodynamics, the soil properties and the type of structure. The key advantage of this model is that it depends entirely on quantities that are measurable in the field. Furthermore this model was further refined by conducting a series of hydraulic model experiments aimed to understand the governing factors of the leeward toe scour failure. Finally, based on the results obtained, key recommendations are given for the design of resilient coastal defence structures that can survive a level 2 tsunami event.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most of the existing researches either focus on vortex-induced-vibrations (VIV) of a pipeline near a rigid boundary, or on seabed scour around a fixed pipeline. In the fields, pipeline vibration and seabed scour are actually always coupled. Based on the similarity analysis, a series of tests were conducted with a hydro-elastic facility to investigate the influence of pipe vibration on the local scour and the effects of scour process on the pipeline dynamic responses. Experimental results indicate that, there exist two phases in the process of sand scouring around the pipeline with small embedment, i.e. Phase I: scour beneath pipe without VIV, and Phase II: scour with VIV of pipe. It is also found that the gap-to-diameter ratio (e/D) has much effect upon the scour depth for the fixed pipes. For a given value of e/D, the vibrating pipes with close proximity to seabed may induce a deeper scour hole than the fixed ones. Within the examined gap-to-diameter ratio range (425 < e/D < 0.75), the influences of gap-to-diameter ratio on the maximum values of scour-depth for the case of vibrating pipes are not as much as those for the case of fixed pipes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case 1: pipe is laid above seabed and Case 11: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e(0)/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of V-r for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e(0)/D (-0.25 < e(0)/D < 0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The failure of hydraulic structures in many estuaries and coastal regions around the world has been attributed to sediment transport and local scour. The sediment incipience in homogenous turbulence generated by oscillating grid is studied in this paper. The turbulent flow is measured by particle tracer velocimetry (PTV) technique. The integral length scale and time scale of turbulence are obtained. The turbulent flow near the wall is measured by local optical magnification. The sediment incipience is described by static theory. The relationship of probability of sediment incipience and the turbulent kinetic energy were obtained experimentally and theoretically. The distribution of the turbulent kinetic energy near the wall is found to obey the power law and the turbulent energy is further identified as the dynamic mechanism of sediment incipience.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用量纲分析法建立了海底管道局部冲刷的相似准则,利用模型实验研究了管道局部冲刷的物理过程,以及极限平衡冲刷深度的影响因素。实验观测发现,对于初始嵌入深度较小的管道而言,局部冲刷一般可分为管道悬空、间隙冲刷、尾迹冲刷和平衡冲刷四个特征阶段。在亚临界流动范围内,管道极限平衡冲刷深度与雷诺数的相关性较小。在清水冲刷条件下,无量纲极限平衡冲刷深度随希尔兹数的增加而增大;在所研究的初始间隙比范围内(-0.25〈e_0/D〈0.55),极限平衡冲刷深度与初始间隙比之间大致呈线性递减关系。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

以床面瞬时剪应力作为泥沙起动及输运的水动力机制,建立了结构物周围复杂流场下床面局部冲刷的数学模型。并应用大涡模拟方法对后台阶下游三维湍流流动进行数值模拟,得到台阶下游床面瞬时剪应力的分布规律。为了确定床面瞬时剪应力与泥沙上扬通量的关系,先应用数学模型对不同模型参数下,冲刷开始后5分钟时台阶下游床面形状进行试算。通过试算与实验结果的比较,确定床面瞬时剪应力与泥沙上扬通量关系中需要的模型参数。进一步对冲刷开始后30分钟内台阶下游床面演化规律进行模拟,模拟结果与实验结果相符合。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For better understanding the mechanism of the occurrence of pipeline span for a pipeline with initial embedment, physical and numerical methods are adopted in this study. Experimental observations show that there often exist three characteristic phases in the process of the partially embedded pipeline being suspended: (a) local scour around pipe; (b) onset of soil erosion beneath pipe; and (c) complete suspension of pipe. The effects of local scour on the onset of soil erosion beneath the pipe are much less than those of soil seepage failure induced by the pressure drop. Based on the above observations and analyses, the mechanism of the occurrence of pipeline spanning is analyzed numerically in view of soil seepage failure. In the numerical analyses, the current-induced pressure along the soil surface in the vicinity of the pipe (i.e. the pressure drop) is firstly obtained by solving the N-S equations, thereafter the seepage flow in the soil is calculated with the obtained pressure drop as the boundary conditions along the soil surface. Numerical results indicate that the seepage failure (or piping) may occur at the exit of the seepage path when the pressure gradient gets larger than the critical value. The numerical treatment provides a practical tool for evaluating the potentials for the occurrence of pipe span due to the soil seepage failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline. The pipeline spanning initiation is experimentally observed and discussed in this article. It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation. A flow-pipe-seepage sequential coupling Finite Element Method (FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field. A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe. Parametric study is performed to investigate the effects of inflow velocity, pipe embedment on the pressure-drop, and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation. It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modifications and upgrades to the hydraulic flume facility in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University are described. These changes enable small-scale testing of model marine hydrokinetic(MHK) devices. The design of the experimental platform provides a controlled environment for testing of model MHK devices to determine their effect on localsubstrate. Specifically, the effects being studied are scour and erosion around a cylindrical support structure and deposition of sediment downstream from the device.