993 resultados para Load lifting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to assess the spectral behavior of the erector spinae muscle during isometric contractions performed before and after a dynamic manual load-lifting test carried out by the trunk in order to determine the capacity of muscle to perform this task. Nine healthy female students participated in the experiment. Their average age, height, and body mass (± SD) were 20 ± 1 years, 1.6 ± 0.03 m, and 53 ± 4 kg, respectively. The development of muscle fatigue was assessed by spectral analysis (median frequency) and root mean square with time. The test consisted of repeated bending movements from the trunk, starting from a 45º angle of flexion, with the application of approximately 15, 25 and 50% of maximum individual load, to the stand up position. The protocol used proved to be more reliable with loads exceeding 50% of the maximum for the identification of muscle fatigue by electromyography as a function of time. Most of the volunteers showed an increase in root mean square versus time on both the right (N = 7) and the left (N = 6) side, indicating a tendency to become fatigued. With respect to the changes in median frequency of the electromyographic signal, the loads used in this study had no significant effect on either the right or the left side of the erector spinae muscle at this frequency, suggesting that a higher amount and percentage of loads would produce more substantial results in the study of isotonic contractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated adaptive neural control of precision grip forces during object lifting. A model is presented that adjusts reactive and anticipatory grip forces to a level just above that needed to stabilize lifted objects in the hand. The model obeys priciples of cerebellar structure and function by using slip sensations as error signals to adapt phasic motor commands to tonic force generators associated with output synergies controlling grip aperture. The learned phasic commands are weight and texture-dependent. Simulations of the new curcuit model reproduce key aspects of experimental observations of force application. Over learning trials, the onset of grip force buildup comes to lead the load force buildup, and the rate-of-rise of grip force, but not load force, scales inversely with the friction of the gripped object.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we review and critique the current body of scientific knowledge regarding the use of team lifting including: (a) psychophysical studies of team lifting capacity, and (b) studies of manual handling, patient handling, and stretcher carriage performed by lifting teams. The consensus of the research literature is that team-lifting capacity is greater than the lifting capacity of an individual, but that the capacity of lifting teams is less than the summed capacity of individual team members. Further, biomechanical, psychophysical, and physiological stress tends to be reduced compared to the equivalent lifts and transfers performed by individuals. However, the stress associated with team lifting depends on a broad range of individual team member, load, task and environmental factors, which can interact in unexpected ways. Caution is therefore recommended against making broad assumptions regarding the use of team lifting. Future studies are needed to examine how effort and load are distributed among lifting team members, with emphasis on identifying factors that may increase the risk of injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information and Communication Technologies (ICTs) provide great promise for the future of education. In the Asia-Pacific region, many nations have started working towards the comprehensive development of infrastructure to enable the development of strong networked educational systems. In Queensland there have been significant initiatives in the past decade to support the integration of technology in classrooms and to set the conditions for the enhancement of teaching and learning with technology. One of the great challenges is to develop our classrooms to make the most of these technologies for the benefit of student learning. Recent research and theory into cognitive load, suggests that complex information environments may well impose a barrier on student learning. Further, it suggests that teachers have the capacity to mitigate against cognitive load through the way they prepare and support students engaging with complex information environments. This chapter compares student learning at different levels of cognitive load to show that learning is enhanced when integrating pedagogies are employed to mitigate against high-load information environments. This suggests that a mature policy framework for ICTs in education needs to consider carefully the development of professional capacities to effectively design and integrate technologies for learning.