814 resultados para Load disaggregation algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sustentabilidade energética do planeta é uma preocupação corrente e, neste sentido, a eficiência energética afigura-se como sendo essencial para a redução do consumo em todos os setores de atividade. No que diz respeito ao setor residencial, o indevido comportamento dos utilizadores aliado ao desconhecimento do consumo dos diversos aparelhos, são factores impeditivos para a redução do consumo energético. Uma ferramenta importante, neste sentido, é a monitorização de consumos nomeadamente a monitorização não intrusiva, que apresenta vantagens económicas relativamente à monitorização intrusiva, embora levante alguns desafios na desagregação de cargas. Abordou-se então, neste documento, a temática da monitorização não intrusiva onde se desenvolveu uma ferramenta de desagregação de cargas residenciais, sobretudo de aparelhos que apresentavam elevados consumos. Para isso, monitorizaram-se os consumos agregados de energia elétrica, água e gás de seis habitações do município de Vila Nova de Gaia. Através da incorporação dos vetores de água e gás, a acrescentar ao da energia elétrica, provou-se que a performance do algoritmo de desagregação de aparelhos poderá aumentar, no caso de aparelhos que utilizem simultaneamente energia elétrica e água ou energia elétrica e gás. A eficiência energética é também parte constituinte deste trabalho e, para tal, implementaram-se medidas de eficiência energética para uma das habitações em estudo, de forma a concluir as que exibiam maior potencial de poupança, assim como rápidos períodos de retorno de investimento. De um modo geral, os objetivos propostos foram alcançados e espera-se que num futuro próximo, a monitorização de consumos não intrusiva se apresente como uma solução de referência no que respeita à sustentabilidade energética do setor residencial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of cloud computing model, distributed caches have become the cornerstone for building scalable applications. Popular systems like Facebook [1] or Twitter use Memcached [5], a highly scalable distributed object cache, to speed up applications by avoiding database accesses. Distributed object caches assign objects to cache instances based on a hashing function, and objects are not moved from a cache instance to another unless more instances are added to the cache and objects are redistributed. This may lead to situations where some cache instances are overloaded when some of the objects they store are frequently accessed, while other cache instances are less frequently used. In this paper we propose a multi-resource load balancing algorithm for distributed cache systems. The algorithm aims at balancing both CPU and Memory resources among cache instances by redistributing stored data. Considering the possible conflict of balancing multiple resources at the same time, we give CPU and Memory resources weighted priorities based on the runtime load distributions. A scarcer resource is given a higher weight than a less scarce resource when load balancing. The system imbalance degree is evaluated based on monitoring information, and the utility load of a node, a unit for resource consumption. Besides, since continuous rebalance of the system may affect the QoS of applications utilizing the cache system, our data selection policy ensures that each data migration minimizes the system imbalance degree and hence, the total reconfiguration cost can be minimized. An extensive simulation is conducted to compare our policy with other policies. Our policy shows a significant improvement in time efficiency and decrease in reconfiguration cost.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 2006 the Route load balancing algorithm was proposed and compared to other techniques aiming at optimizing the process allocation in grid environments. This algorithm schedules tasks of parallel applications considering computer neighborhoods (where the distance is defined by the network latency). Route presents good results for large environments, although there are cases where neighbors do not have an enough computational capacity nor communication system capable of serving the application. In those situations the Route migrates tasks until they stabilize in a grid area with enough resources. This migration may take long time what reduces the overall performance. In order to improve such stabilization time, this paper proposes RouteGA (Route with Genetic Algorithm support) which considers historical information on parallel application behavior and also the computer capacities and load to optimize the scheduling. This information is extracted by using monitors and summarized in a knowledge base used to quantify the occupation of tasks. Afterwards, such information is used to parameterize a genetic algorithm responsible for optimizing the task allocation. Results confirm that RouteGA outperforms the load balancing carried out by the original Route, which had previously outperformed others scheduling algorithms from literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Thesis focused on hardware based Load balancing solution of web traffic through a load balancer F5 content switch. In this project, the implemented scenario for distributing HTTPtraffic load is based on different CPU usages (processing speed) of multiple member servers.Two widely used load balancing algorithms Round Robin (RR) and Ratio model (weighted Round Robin) are implemented through F5 load balancer. For evaluating the performance of F5 content switch, some experimental tests has been taken on implemented scenarios using RR and Ratio model load balancing algorithms. The performance is examined in terms of throughput (bits/sec) and Response time of member servers in a load balancing pool. From these experiments we have observed that Ratio Model load balancing algorithm is most suitable in the environment of load balancing servers with different CPU usages as it allows assigning the weight according to CPU usage both in static and dynamic load balancing of servers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This chapter describes a parallel optimization technique that incorporates a distributed load-balancing algorithm and provides an extremely fast solution to the problem of load-balancing adaptive unstructured meshes. Moreover, a parallel graph contraction technique can be employed to enhance the partition quality and the resulting strategy outperforms or matches results from existing state-of-the-art static mesh partitioning algorithms. The strategy can also be applied to static partitioning problems. Dynamic procedures have been found to be much faster than static techniques, to provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data. The method employs a new iterative optimization technique that balances the workload and attempts to minimize the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indicate that the algorithm provides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more quickly. The dynamic evolution of load has three major influences on possible partitioning techniques; cost, reuse, and parallelism. The unstructured mesh may be modified every few time-steps and so the load-balancing must have a low cost relative to that of the solution algorithm in between remeshing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a dynamic distributed load balancing algorithm for parallel, adaptive finite element simulations using preconditioned conjugate gradient solvers based on domain-decomposition. The load balancer is designed to maintain good partition aspect ratios. It calculates a balancing flow using different versions of diffusion and a variant of breadth first search. Elements to be migrated are chosen according to a cost function aiming at the optimization of subdomain shapes. We show how to use information from the second step to guide the first. Experimental results using Bramble's preconditioner and comparisons to existing state-of-the-art balancers show the benefits of the construction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structured data represented in the form of graphs arises in several fields of the science and the growing amount of available data makes distributed graph mining techniques particularly relevant. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiver-initiated, load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening dataset, where the approach attains close-to linear speedup in a network of workstations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a dynamic distributed load balancing algorithm for parallel, adaptive finite element simulations using preconditioned conjugate gradient solvers based on domain-decomposition. The load balancer is designed to maintain good partition aspect ratios. It can calculate a balancing flow using different versions of diffusion and a variant of breadth first search. Elements to be migrated are chosen according to a cost function aiming at the optimization of subdomain shapes. We show how to use information from the second step to guide the first. Experimental results using Bramble's preconditioner and comparisons to existing state-ot-the-art load balancers show the benefits of the construction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents the development and modification of techniques to reduce the effects of load variation and mains frequency deviation in repetitive controllers applied to active power filters. To minimize the effects of aperiodic signals resulting from the connection or disconnection of non-linear loads is developed a technique which recognizes linear and nonlinear loads, and operates to reset the controller only when the error due to the transition of considerable value, and the transition is from non-linear to linear load. An algorithm to adapt the gain of the repetitive controller, based on a sigmoid function adaptation, in order to minimize the effects caused by random noise in the measurement system is also used. This work also analyzes the effects of frequency variation and presents the main methods to cope with this situation. Some solutions are the change in the number of samples per period and the variation of the sampling rate. The first has the advantage of using linear design techniques and results in a time invariant system. The second method changes the sampling frequency and leads to a time variant system that demands a difficult analysis of stability. The proposed algorithms were tested using the methods of truncation of the number of samples and the method of changing the sampling rate of the system to compensate possible frequency variations of the grid. Experimental results are presented to validate the proposal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new methodology to estimate unbalanced harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The problem solving algorithm herein proposed makes use of data from various power quality meters, which can either be synchronized by high technology GPS devices or by using information from a fundamental frequency load flow, what makes the overall power quality monitoring system much less costly. The ES based harmonic estimation model is applied to a 14 bus network to compare its performance to a conventional Monte Carlo approach. It is also applied to a 50 bus subtransmission network in order to compare the three-phase and single-phase approaches as well as the robustness of the proposed method. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the applicability of a new algorithm for the estimation of mechanical properties from instrumented indentation data was studied for thin films. The applicability was analyzed with the aid of both three-dimensional finite element simulations and experimental indentation tests. The numerical approach allowed studying the effect of the substrate on the estimation of mechanical properties of the film, which was conducted based on the ratio h(max)/l between maximum indentation depth and film thickness. For the experimental analysis, indentation tests were conducted on AISI H13 tool steel specimens, plasma nitrated and coated with TiN thin films. Results have indicated that, for the conditions analyzed in this work, the elastic deformation of the substrate limited the extraction of mechanical properties of the film/substrate system. This limitation occurred even at low h(max)/l ratios and especially for the estimation of the values of yield strength and strain hardening exponent. At indentation depths lower than 4% of the film thickness, the proposed algorithm estimated the mechanical properties of the film with accuracy. Particularly for hardness, precise values were estimated at h(max)/l lower than 0.1, i.e. 10% of film thickness. (C) 2010 Published by Elsevier B.V.