914 resultados para Load Modulation
Resumo:
Host genetic factors play an important role in mediating resistance to HIV-1 infection and may modify the course of infection. HLA-B alleles (Bw4 epitope; B*27 and B*57) as well as killer cell immunoglobulin-like receptors have been associated with slow progression of HIV-1 infection. OBJECTIVE: To evaluate the association between serological epitopes HLA-Bw4 and HLA-Bw6 and prognostic markers in AIDS. METHODS: 147 HIV-infected individuals in Bahia, Northeast Brazil, were genotyped for HLA class I locus. HLA class I genotyping was performed by hybridization with sequence-specific oligonucleotide probes following amplification of the corresponding HLA-A, HLA-B and HLA-C genes. Statistical analysis was performed using Fisher's exact and ANOVA tests for categorical and continuous variables, respectively. RESULTS: We detected a significant association (χ2 = 4.856; p = 0.018) between the presence of HLA-Bw4 and low levels of viremia. Eighteen out of the 147 HIV-infected individuals presented viremia <1,800 copies/mL and 129 presented viremia > 2,000 copies/mL. Ninety and four percent (17/18) of all individuals with viremia < 1,800 copies/mL carried HLA-Bw4, compared to 67.4% (87/129) of individuals with viremia > 2,000 copies/mL. Additionally, we found a significantly higher frequency of B*57 (OR = 13.94; 95% CI = 4.19-46.38; p < 0.0001) and Cw*18 (OR = 16.15; 95% CI = 3.46-75.43; p < 0.0001) alleles, favoring the group with lower viremia levels, in comparison with those with higher viral load. CONCLUSION: HLA-Bw4-B*57 and Cw*18 alleles are associated with lower level of viral load in HIV-infected Brazilian patients. These findings may help us in understanding the determinants of HIV evolution in Brazilian patients, as well as in providing important information on immune response correlates of protection for such population.
Resumo:
Nowadays, wireless communications systems demand for greater mobility and higher data rates. Moreover, the need for spectral efficiency requires the use of non-constant envelope modulation schemes. Hence, power amplifier designers have to build highly efficient, broadband and linear amplifiers. In order to fulfil these strict requirements, the practical Doherty amplifier seems to be the most promising technique. However, due to its complex operation, its nonlinear distortion generation mechanisms are not yet fully understood. Currently, only heuristic interpretations are being used to justify the observed phenomena. Therefore, the main objective of this work is to provide a model capable of describing the Doherty power amplifier nonlinear distortion generation mechanisms, allowing the optimization of its design according to linearity and efficiency criteria. Besides that, this approach will allow a bridge between two different worlds: power amplifier design and digital pre-distortion since the knowledge gathered from the Doherty operation will serve to select the most suitable pre-distortion models.
Resumo:
Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
Resumo:
In primates, the observation of meaningful, goaldirected actions engages a network of cortical areas located within the premotor and inferior parietal lobules. Current models suggest that activity within these regions arises relatively automatically during passive action observation without the need for topdown control. Here we used functional magnetic resonance imaging to determine whether cortical activit)' associated with action observation is modulated by the strategic allocation of selective attention. Normal observers viewed movie clips of reach-to-grasp actions while performing an easy or difficult visual discrimination at the fovea. A wholebrain analysis was performed to determine the effects of attentional load on neural responses to observed hand actions. Our results suggest that cortical areas involved in action observation are significantiy modulated by attentional load. These findings have important implications for recent attempts to link the human action-observation system to response properties of "mirror neurons" in monkeys.
Resumo:
Tissue-to-tissue interfaces are commonly present in all tissues exhibiting structural, biological and chemical gradients serving a wide range of physiological functions. These interfaces are responsible for mediation of load transfer between two adjacent tissues. They are also important structures in sustaining the cellular communications to retain tissueâ s functional integration and homeostasis. [1] All cells have the capacity to sense and respond to physical and chemical stimulus and when cultured in three-dimensional (3D) environments they tend to perform their function better than in two-dimensional (2D) environments. Spatial and temporal 3D gradient hydrogels better resemble the natural environment of cells in mimicking their extracellular matrix. [2] In this study we hypothesize that differential functional properties can be engineered by modulation of macromolecule gradients in a cell seeded threedimensional hydrogel system. Specifically, differential paracrine secretory profiles can be engineered using human Bone Marrow Stem Cells (hBMSCâ s). Hence, the specific objectives of this study are to: assemble the macromolecular gradient hydrogels to evaluate the suitablity for hBMSCâ s encapsulation by cellular viability and biofunctionality by assessing the paracrine secretion of hBMSCâ s over time. The gradient hydrogels solutions were prepared by blend of macromolecules in one solution such as hyaluronic (HA) acid and collagen (Col) at different ratios. The gradient hydrogels were fabricated into cylindrical silicon moulds with higher ratio solutions assembled at the bottom of the mould and adding the two solutions consecutively on top of each other. The labelling of the macromolecules was performed to confirm the gradient through fluorescence microscopy. Additionally, AFM was conducted to assess the gradient hydrogels stiffness. Gradient hydrogels characterization was performed by HA and Col degradation assay, degree of crosslinking and stability. hBMSCâ s at P3 were encapsulated into each batch solution at 106 cells/ml solution and gradient hydrogels were produced as previously described. The hBMSCâ s were observed under confocal microscopy to assess viability by Live/Dead® staining. Cellular behaviour concerning proliferation and matrix deposition was also performed. Secretory cytokine measurement for pro-inflammatory and angiogenesis factors was carried out using ELISA. At genomic level, qPCR was carried out. The 3D gradient hydrogels platform made of different macromolecules showed to be a suitable environment for hBMSCâ s. The hBMSCâ s gradient hydrogels supported high cell survival and exhibited biofunctionality. Besides, the 3D gradient hydrogels demonstrated differentially secretion of pro-inflammatory and angiogenic factors by the encapsulated hBMSCâ s. References: 1. Mikos, AG. et al., Engineering complex tissues. Tissue Engineering 12,3307, 2006 2. Phillips, JE. et al., Proc Natl Acad Sci USA, 26:12170-5, 2008
Resumo:
High fructose consumption is associated with obesity and characteristics of metabolic syndrome. This includes insulin resistance, dyslipidemia, type II diabetes and hepatic steatosis, the hepatic component of metabolic syndrome. Short term high fructose consumption in healthy humans is considered as a study model to increase intrahepatocellular lipids (IHCL). Protein supplementation added to a short term high fructose diet exerts a protective role on hepatic fat accumulation. Fructose disposal after an acute fructose load is well established. However, fructose disposal is usually studied when a high intake of fructose is ingested. Interaction of fructose with other macronutrients on fructose disposal is not clearly established. We wanted to assess how fructose disposal is modulated with nutritional factors. For the first study, we addressed the question of how would essential amino acid (EAA) supplemented to a high fructose diet have an impact on hepatic fat accumulation? We tried to distinguish which metabolic pathways were responsible for the increase in IHCL induced by high fructose intake and how those pathways would be modulated by EAA. After 6 days of hypercaloric high fructose diet, we observed, as expected an increase in IHCL modulated by an increase in VLDL-triglycerides and an increase in VLDL-13C-palmitate production. When adding a supplementation in EAA, we observed a decrease in IHCL but we could not define which mechanism was responsible for this process. With the second study, we were interested to observe fructose disposal after a test meal that contained lipid, protein and a physiologic dose of fructose co-ingested or not with glucose. When ingested with other macronutrients, hepatic fructose disposal is similar as when ingested as pure fructose. It induced oxidation, gluconeogenesis followed by glycogen synthesis, conversion into lactate and to a minor extent by de novo lipogenesis. When co- ingested with glucose decreased fructose oxidation as well as gluconeogenesis and an increased glycogen synthesis without affecting de novo lipogenesis or lactate. We were also able to observe induction of intestinal de novo lipogenesis with both fructose and fructose co- ingested with glucose. In summary, essential amino acids supplementation blunted increase in hepatic fat content induced by a short term chronic fructose overfeeding. However, EAA failed to improve other cardiovascular risk factors. Under isocaloric condition and in the frame of an acute test meal, physiologic dose of fructose associated with other macronutrients led to the same fructose disposal as when fructose is ingested alone. When co-ingested with glucose, we observed a decrease in fructose oxidation and gluconeogenesis as well as an increased in glycogen storage without affecting other metabolic pathways. - Une consommation élevée en fructose est associée à l'obésité et aux caractéristiques du syndrome métabolique. Ces dernières incluent une résistance à l'insuline, une dyslipidémie, un diabète de type II et la stéatose hépatique, composant hépatique du syndrome métabolique. À court terme une forte consommation en fructose chez l'homme sain est considérée comme un modèle d'étude pour augmenter la teneur en graisse hépatique. Une supplémentation en protéines ajoutée à une alimentation riche en fructose de courte durée a un effet protecteur sur l'accumulation des graisses au niveau du foie. Le métabolisme du fructose après une charge de fructose aiguë est bien établi. Toutefois, ce dernier est généralement étudié quand une consommation élevée de fructose est donnée. L'interaction du fructose avec d'autres macronutriments sur le métabolisme du fructose n'est pas connue. Nous voulions évaluer la modulation du métabolisme du fructose par des facteurs nutritionnels. Pour la première étude, nous avons abordé la question de savoir quel impact aurait une supplémentation en acides aminés essentiels (AEE) associé à une alimentation riche en fructose sur l'accumulation des graisses hépatiques. Nous avons essayé de distinguer les voies métaboliques responsables de l'augmentation des graisses hépatiques induite par l'alimentation riche en fructose et comment ces voies étaient modulées par les AEE. Après 6 jours d'une alimentation hypercalorique riche en fructose, nous avons observé, comme attendu, une augmentation des graisses hépatiques modulée par une augmentation des triglycérides-VLDL et une augmentation de la production de VLDL-13C-palmitate. Lors de la supplémentation en AEE, nous avons observé une diminution des graisses hépatiques mais les mécanismes responsables de ce processus n'ont pas pu être mis en évidence. Avec la seconde étude, nous nous sommes intéressés à observer le métabolisme du fructose après un repas test contenant des lipides, des protéines et une dose physiologique de fructose co-ingéré ou non avec du glucose. Lorsque le fructose était ingéré avec les autres macronutriments, le devenir hépatique du fructose était similaire à celui induit par du fructose pur. Il a induit une oxydation, suivie d'une néoglucogenèses, une synthèse de glycogène, une conversion en lactate et dans une moindre mesure une lipogenèse de novo. Lors de la co-ngestion avec du glucose, nous avons observé une diminution de l'oxydation du fructose et de la néoglucogenèse et une augmentation de la synthèse du glycogène, sans effet sur la lipogenèse de novo ni sur le lactate. Nous avons également pu mettre en évidence que le fructose et le fructose ingéré de façon conjointe avec du glucose ont induit une lipogenèse de novo au niveau de l'intestin. En résumé, la supplémentation en acides aminés essentiels a contrecarré l'augmentation de la teneur en graisse hépatique induite par une suralimentation en fructose sur le court terme. Cependant, la supplémentation en AEE a échoué à améliorer d'autres facteurs de risque cardiovasculaires. Dans la condition isocalorique et dans le cadre d'un repas test aiguë, la dose physiologique de fructose associée à d'autres macronutriments a conduit aux mêmes aboutissants du métabolisme du fructose que lorsque le fructose est ingéré seul. Lors de la co-ngestion avec le glucose, une diminution de l'oxydation du fructose est de la néoglucogenèse est observée en parallèle à une augmentation de la synthèse de glycogène sans affecter les autres voies métaboliques.
Resumo:
Background: CD8 T-cells play a critical role in antiviral immunity. However, mechanisms of virus control and immune correlates of protection are still not fully understood. Among other factors, TCR avidity (antigen sensitivity) is thought to play a critical role. Whereas there is a large consensus that high TCR avidity T-cell responses are correlated to higher efficacy against cancer and acute viral infections, it may be not the case in chronic persistent viral infections. Methods: TCR avidity (measured by the effect concentration 50% [EC50]) of HIV-1-specific CD8 T-cell responses directed against optimal epitopes was investigated in different cohorts of HIV-1- infected subjects (n¼114) including early acute and chronic (progressive and non-progressive) HIV-1-infection. Overall, TCR avidity was investigated in 245 HIV-1-specific CD8 T-cell responses. The relationships between TCR avidity, T-cell differentiation and functional profile including cytokine secretion, proliferation and cytotoxic potential (determined by polychromatic flow cytometry) were analyzed. Results: HIV-1-specific CD8 T-cell responses from patients with acute infection had significantly lower TCR avidity as compared to patients with chronic (progressive or non-progressive) HIVinfection (P¼0.03 and 0.003, respectively). These differences remained significant when the analyses were restricted to common epitopes (same epitopes restricted by the same class I HLA). Interestingly, some patients treated during acute infection underwent spontaneous treatment interruption. Re-exposure to high viral load induced two major effects: a) the increase in TCR avidity of pre-existing high avidity (EC50<0.01) T-cell responses (P<0.02) and b) the generation of new T-cell responses with higher TCR avidity as compared to the average pre-existing T-cell responses. Conclusion: These results suggest that high TCR avidity T-cell responses are selected during the course of HIV-1 infection and that one of the potential driving mechanisms is continuous exposure to HIV-1 antigens. These results advance our understanding of the relationship between TCR avidity and Ag exposure of antiviral memory CD8 T-cells.
Resumo:
Multilevel converters provide an attractive solution to bring the benefits of speed-controlled rotational movement to high-power applications. Therefore, multilevel inverters have attracted wide interest in both the academic community and in the industry for the past two decades. In this doctoral thesis, modulation methods suitable especially for series connected H-bridge multilevel inverters are discussed. A concept of duty cycle modulation is presented and its modification is proposed. These methods are compared with other well-known modulation schemes, such as space-vector pulse width modulation and carrier-based modulation schemes. The advantage of the modified duty-cycle modulation is its algorithmic simplicity. A similar mathematical formulation for the original duty cycle modulation is proposed. The modified duty cycle modulation is shown to produce well-formed phase-to-neutral voltages that have lower total harmonic distortion than the space-vector pulse width modulation and the duty cycle modulation. The space-vector-based solution and the duty cycle modulation, on the other hand, result in a better-quality line-to-line voltage and current waveform. The voltage of the DC links in the modules of the series-connected H-bridge inverter are shown to fluctuate while they are under load. The fluctuation causes inaccuracies in the voltage production, which may result in a failure of the flux estimator in the controller. An extension for upper-level modulation schemes, which changes the switching instants of the inverter so that the output voltage meets the reference voltage accurately regardless of the DC link voltages, is proposed. The method is shown to reduce the error to a very low level when a sufficient switching frequency is used. An appropriate way to organize the switching instants of the multilevel inverter is to make only one-level steps at a time. This causes restrictions on the dynamical features of the modulation schemes. The produced voltage vector cannot be rotated several tens of degrees in a single switching period without violating the above-mentioned one-level-step rule. The dynamical capabilities of multilevel inverters are analyzed in this doctoral thesis, and it is shown that the multilevel inverters are capable of operating even in dynamically demanding metal industry applications. In addition to the discussion on modulation schemes, an overvoltage in multilevel converter drives caused by cable reflection is addressed. The voltage reflection phenomenon in drives with long feeder cables causes premature insulation deterioration and also affects the commonmode voltage, which is one of the main reasons for bearing currents. Bearing currents, on the other hand, cause fluting in the bearings, which results in premature bearing failure. The reflection phenomenon is traditionally prevented by filtering, but in this thesis, a modulationbased filterless method to mitigate the overvoltage in multilevel drives is proposed. Moreover, the mitigation method can be implemented as an extension for upper-level modulation schemes. The method exploits the oscillations caused by two consecutive voltage edges so that the sum of the oscillations results in a mitigated peak of the overvoltage. The applicability of the method is verified by simulations together with experiments with a full-scale prototype.
Resumo:
The purpose of this study was to investigate the behavior of heart rate (HR) and HR variability (HRV) during different loads of resistance exercise (incline bench press) in patients with coronary artery disease (CAD) and healthy sedentary controls. Ten healthy men (65 ± 1.2 years, control group, CG) and 10 men with clinically stable CAD (66 ± 2.4 years, CADG) were recruited. A discontinuous progressive protocol was applied with an initial load of 10% of the maximum load achieved in the 1RM (1 repetition maximum) with increases of 10% until 30% 1RM was reached, which was followed by subsequent increases of 5% 1RM until exhaustion. HRV was analyzed by linear and non-linear methods. There was a significant reduction in rMSSD (CG: 20 ± 2 to 11 ± 3 ms; CADG: 19 ± 3 to 9 ± 1 ms) and SD1 indexes (CG: 14 ± 2 to 8 ± 1 ms; CADG: 14 ± 2 to 7 ± 1 ms). An increase in HR (CG: 69 ± 5 to 90 ± 5 bpm; CADG: 62 ± 4 to 75 ± 4 bpm) and in systolic blood pressure (CG: 124 ± 3 to 138 ± 3 mmHg; CADG: 122 ± 6 to 126 ± 9 bpm) were observed (P < 0.05) when comparing pre-effort rest and 40% 1RM in both groups. Furthermore, an increase in RMSM index was also observed (CG: 28 ± 3 to 45 ± 9 ms; CADG: 22 ± 2 to 79 ± 33 ms), with higher values in CADG. We conclude that loads up to 30% 1RM during incline bench press result in depressed vagal modulation in both groups, although only stable CAD patients presented sympathetic overactivity at 20% 1RM upper limb exercise.
Resumo:
Whereas the role of the anterior cingulate cortex (ACC) in cognitive control has received considerable attention, much less work has been done on the role of the ACC in autonomic regulation. Its connections through the vagus nerve to the sinoatrial node of the heart are thought to exert modulatory control over cardiovascular arousal. Therefore, ACC is not only responsible for the implementation of cognitive control, but also for the dynamic regulation of cardiovascular activity that characterizes healthy heart rate and adaptive behaviour. However, cognitive control and autonomic regulation are rarely examined together. Moreover, those studies that have examined the role of phasic vagal cardiac control in conjunction with cognitive performance have produced mixed results, finding relations for specific age groups and types of tasks but not consistently. So, while autonomic regulatory control appears to support effective cognitive performance under some conditions, it is not presently clear just what factors contribute to these relations. The goal of the present study was, therefore, to examine the relations between autonomic arousal, neural responsivity, and cognitive performance in the context of a task that required ACC support. Participants completed a primary inhibitory control task with a working memory load embedded. Pre-test cardiovascular measures were obtained, and ontask ERPs associated with response control (N2/P3) and error-related processes (ERN/Pe) were analyzed. Results indicated that response inhibition was unrelated to phasic vagal cardiac control, as indexed by respiratory sinus arrhythmia (RSA). However, higher resting RSA was associated with larger ERN ampUtude for the highest working memory load condition. This finding suggests that those individuals with greater autonomic regulatory control exhibited more robust ACC error-related responses on the most challenging task condition. On the other hand, exploratory analyses with rate pressure product (RPP), a measure of sympathetic arousal, indicated that higher pre-test RPP (i.e., more sympathetic influence) was associated with more errors on "catch" NoGo trials, i.e., NoGo trials that simultaneously followed other NoGo trials, and consequently, reqviired enhanced response control. Higher pre-test RPP was also associated with smaller amplitude ERNs for all three working memory loads and smaller ampUtude P3s for the low and medium working memory load conditions. Thus, higher pretest sympathetic arousal was associated with poorer performance on more demanding "catch" NoGo trials and less robust ACC-related electrocortical responses. The findings firom the present study highlight tiie interdependence of electrocortical and cardiovascular processes. While higher pre-test parasympathetic control seemed to relate to more robust ACC error-related responses, higher pre-test sympathetic arousal resulted in poorer inhibitory control performance and smaller ACC-generated electrocortical responses. Furthermore, these results provide a base from which to explore the relation between ACC and neuro/cardiac responses in older adults who may display greater variance due to the vulnerabihty of these systems to the normal aging process.
Resumo:
Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signalling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors which convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain, 1Hz for 48 hours to mimic in vivo mechanical stress. Cells were also treated with and without L-NAME, a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres which was rescued by LNAME (P<0.05, n≥5 cultures). We hypothesized that the mechanism was through NOinduced alteration of myocyte gene expression. L-NAME up-regulated the mechanosensing proteins Muscle LIM protein (MLP (by 100%, p<0.05, n=4 cultures)) and lipoma preferred partner, a novel cardiac protein (LPP (by 80%, p<0.05, n=4 cultures)). L-NAME also significantly altered the subcellular localisation of LPP and MLP in a manner that favoured growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between iNOS and nNOS isoforms regulate gene expression. LPP knockdown by siRNA led to formation of α-actinin aggregates and Z-bodies showing that myofibrillogenesis was impaired. There was an up-regulation of E3 ubiquitin ligase (MUL1) by 75% (P<0.05, n=5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure. Keywords: Mechanotransduction, heart failure, stretch, heart, hypertrophy
Resumo:
Background Event-related desynchronization/synchronization (ERD/ERS) is a relative power decrease/increase of electroencephalogram (EEG) in a specific frequency band during physical motor execution and mental motor imagery, thus it is widely used for the brain-computer interface (BCI) purpose. However what the ERD really reflects and its frequency band specific role have not been agreed and are under investigation. Understanding the underlying mechanism which causes a significant ERD would be crucial to improve the reliability of the ERD-based BCI. We systematically investigated the relationship between conditions of actual repetitive hand movements and resulting ERD. Methods Eleven healthy young participants were asked to close/open their right hand repetitively at three different speeds (Hold, 1/3 Hz, and 1 Hz) and four distinct motor loads (0, 2, 10, and 15 kgf). In each condition, participants repeated 20 experimental trials, each of which consisted of rest (8–10 s), preparation (1 s) and task (6 s) periods. Under the Hold condition, participants were instructed to keep clenching their hand (i.e., isometric contraction) during the task period. Throughout the experiment, EEG signals were recorded from left and right motor areas for offline data analysis. We obtained time courses of EEG power spectrum to discuss the modulation of mu and beta-ERD/ERS due to the task conditions. Results We confirmed salient mu-ERD (8–13 Hz) and slightly weak beta-ERD (14–30 Hz) on both hemispheres during repetitive hand grasping movements. According to a 3 × 4 ANOVA (speed × motor load), both mu and beta-ERD during the task period were significantly weakened under the Hold condition, whereas no significant difference in the kinetics levels and interaction effect was observed. Conclusions This study investigates the effect of changes in kinematics and kinetics on resulting ERD during repetitive hand grasping movements. The experimental results suggest that the strength of ERD may reflect the time differentiation of hand postures in motor planning process or the variation of proprioception resulting from hand movements, rather than the motor command generated in the down stream, which recruits a group of motor neurons.
Resumo:
The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself.
Resumo:
Striated muscle exhibits a pronounced structural-functional plasticity in response to chronic alterations in loading. We assessed the implication of focal adhesion kinase (FAK) signalling in mechano-regulated differentiation of slow-oxidative muscle. Load-dependent consequences of FAK signal modulation were identified using a multi-level approach after electrotransfer of rat soleus muscle with FAK-expression plasmid vs. empty plasmid-transfected contralateral controls. Muscle fibre-targeted over-expression of FAK in anti-gravitational muscle for 9 days up-regulated transcript levels of gene ontologies underpinning mitochondrial metabolism and contraction in the transfected belly portion. Concomitantly, mRNA expression of the major fast-type myosin heavy chain (MHC) isoform, MHC2A, was reduced. The promotion of the slow-oxidative expression programme by FAK was abolished after co-expression of the FAK inhibitor FAK-related non-kinase (FRNK). Elevated protein content of MHC1 (+9%) and proteins of mitochondrial respiration (+165-610%) with FAK overexpression demonstrated the translation of transcript differentiation in targeted muscle fibres towards a slow-oxidative muscle phenotype. Coincidentally MHC2A protein was reduced by 50% due to protection of muscle from de-differentiation with electrotransfer. Fibre cross section in FAK-transfected muscle was elevated by 6%. The FAK-modulated muscle transcriptome was load-dependent and regulated in correspondence to tyrosine 397 phosphorylation of FAK. In the context of overload, the FAK-induced gene expression became manifest at the level of contraction by a slow transformation and the re-establishment of normal muscle force from the lowered levels with transfection. These results highlight the analytic power of a systematic somatic transgene approach by mapping a role of FAK in the dominant mechano-regulation of muscular motor performance via control of gene expression.