29 resultados para Liverworts
Resumo:
Taxonomic relationships of the liverwort genus Herbertus in Asia were examined. In addition, the phylogeny of the family Herbertaceae and its close relatives was investigated and analyses conducted of higher level relationships within the entire liverwort phylum. Species of Herbertus show great plasticity in various morphological characters, resulted in a large number of described species. This study was the first comprehensive revision of Asian Herbertus, with 12 species recognized for the continent. Eleven names were reduced to synonymy under earlier described species, and one species was excluded from the genus. Herbertus buchii Juslén was described as a new species. Phylogenetic analyses based on both molecular and morphological characters resolved the families Vetaformaceae, Lepicoleaceae, and Herbertaceae (including Mastigophoraceae) as a monophyletic entity. This clade is among the most derived groups within the leafy liverworts and comprises mostly isophyllous plants, all of which have bracteolar antheridia. The relationships of Mastigophoraceae have formerly been controversial. My results confirm the view that this family is closely related to Herbertaceae, Lepicoleaceae, and Vetaformaceae. In the proposed new classification Mastigophoraceae is included in Herbertaceae. Phylogenetic relationships within the liverworts were reconstructed using both chloroplast and nuclear sequences as well as morphological characters. These analyses were the most comprehensive to date at the time of publication. Previously it was believed that liverworts had a common ancestor with an erect, radial gametophyte and a tetrahedral apical cell. The leafy liverworts were arranged based on the assumption that similar structures had repeatedly developed in many different suborders, with evolution proceeding from erect and isophyllous to creeping and anisophyllous plants. The complex thalloid liverworts were assumed to be the most derived group. By contrast, our studies resolved a clade comprising Treubia and Haplomitrium as the earliest extant liverwort lineage. According to our results the complex thalloids are also an early diverging lineage, and the simple thalloids, traditionally classified together, are a paraphyletic group. Within leafy liverworts, the hypothesis of repeated evolution from isophyllous to anisophyllous plants based on the assumption of a basal unresolved polytomy was rejected. Fundamentally, the leafy liverworts can be divided into three groups. In conflict with the earlier hypotheses, the isophyllous liverworts, including Herbertaceae, were resolved as derived lineages within the liverworts.
Resumo:
The area of intensively managed forests, in which required conditions for several liverwort species are seldom found, has expanded over the forest landscape during the last century. Liverworts are very sensitive to habitat changes, because they demand continuously moist microclimate. Consequently, about third of the forest liverworts have been classified as threatened or near threatened in Finland. The general objective of this thesis is to increase knowledge of the reproductive and dispersal strategies of the substrate-specific forest bryophytes. A further aim was to develop recommendations for conservation measures for species inhabiting unstable and stable habitats in forest landscape. Both population ecological and genetic methods have been applied in the research. Anastrophyllum hellerianum inhabits spatially and temporally limited substrate patches, decaying logs, which can be considered as unstable habitats. The results show that asexual reproduction by gemmae is the dominant mode of reproduction, whereas sexual reproduction is considerably infrequent. Unlike previously assumed, not only spores but also the asexual propagules may contribute to long-distance dispersal. The combination of occasional spore production and practically continuous, massive gemma production facilitates dispersal both on a local scale and over long distances, and it compensates for the great propagule losses that take place preceding successful establishment at suitable sites. However, establishment probability of spores may be restricted because of environmental and biological limitations linked to the low success of sexual reproduction. Long-lasting dry seasons are likely to result in a low success of sexual reproduction and decreased release rate of gemmae from the shoots, and consequent fluctuations in population sizes. In the long term, the substratum limitation is likely to restrict population sizes and cause local extinctions, especially in small-sized remnant populations. Contrastingly, larger forest fragments with more natural disturbance dynamics, to which the species is adapted, are pivotal to species survival. Trichocolea tomentella occupies stable spring and mesic habitats in woodland. The relatively small populations are increasingly fragmented with a high risk for extinction for extrinsic reasons. The results show that T. tomentella mainly invests in population persistence by effective clonal growth via forming independent ramets and in competitive ability, and considerably less in sexuality and dispersal potential. The populations possess relatively high levels of genetic diversity regardless of population size and of degree of isolation. Thus, the small-sized populations inhabiting stable habitats should not be neglected when establishing conservation strategies for the species and when considering the habitat protection of small spring sites. Restricted dispersal capacity, also on a relatively small spatial scale, is likely to prevent successful (re-)colonization in the potential habitat patches of recovering forest landscapes. By contrast, random short-range dispersal of detached vegetative fragments within populations at suitable habitat seems to be frequent. Thus, the restoration actions of spring and streamside habitats close to the populations of T. tomentella may contribute to population expansion. That, in turn, decreases the harmful effects of environmental stochasticity.
Resumo:
Biodiversity surveys were conducted in 13, 10x50 m(2) plots located between 1400 to 3100 in abode mean sea level in a range of habitats in temperate mixed Oak and Coniferous forests through sub-alpine to the alpine grasslands in Chamoli district of Uttaranchal state in the Indian Garhwal Himalaya. Cross-taxon congruence in biodiversity (alpha-diversity and beta-diversity) across macrolichens, mosses, liverworts, woody plants (shrubs and trees) and ants was investigated, so as to examine the extent to which these group, of organisms can function as Surrogates for each other. Although woody plants provided a major substrate for macrolichens and mosses, there was no species-specific association between them. Woody plant species richness was highly positively correlated with mosses (r(2) = 0.63, P < 0.001) but the relationship, as not particularly very strong with lichens and liverworts. While there was a significant correlation in the species turnover (β-diversity) of macrolichens with mosses (r(2) = 0.21 P < 0.005). the relationship was relatively poor with the woody plants. On the other hand. negative correlations emerged in the species richness of ants with those of macrolichens, mosses and woody plants (r(2) = -0.44 P < 0.05). but most of the complementarity (turnover) relationships among them were positive, Since diversity between taxonomic hierarchies within the group was consistently significantly positively correlated in all these taxa, the higher taxonomic categories Such as genus and family may be employed as surrogates for rapid assessment and monitoring of species diversity, Although no single group other than macrolichens has emerged as a good indicator of changes in species richness in all other groups, some concordant relationships between them conform to the hypothesis that species assemblages of certain taxonomic groups could still be used as surrogates for efficient monitoring of species diversity in other groups whose distribution may further predict the importance of conserving overall biodiversity in landscapes such as the Garhwal Himalaya. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
本论文包括两部分的内容,第一部分是秦岭苔类植物的区系研究,第二部分是中国剪叶苔属Herbertus的分类学修订。 秦岭位于我国的中部,东经104º30´~112º52´,北纬32º50´~34º45´N,约76 500 km2。它主要位于陕西省的南部地区,并包括了河南、甘肃和湖北的部分县、市。秦岭的最高峰是太白山,海拔3 767米。秦岭是长江和黄河的分水岭,也是我国温带和亚热带气候的过渡地带。 本研究包含了对自19世纪开始对秦岭苔藓植物的主要采集活动的回顾,和截止2008年以来对秦岭苔类和角苔类植物报道的总结和分析,且首次给出了一份秦岭地区详细的苔类植物的名录,并包括了各个种在秦岭地区的详细分布。根据目前的研究,现已知秦岭的苔类植物有226种(包括种下单位,以下同),其中角苔纲1科3属6种,苔纲30科59属220种;提出了1个新异名:Radula constricta Steph.被处理为Radula lindenbergiana Gottsche var. atypa Massalongo的异名;并提出了1个新组合Metzgeria pubescens var. kinabaluensis (Kuwah) F.X. Li & Y. Jia;发现秦岭新分布的苔类有78种。根据种数,秦岭地区苔类的优势科为光萼苔科(34种),其次为耳叶苔科(23种),裂叶苔科(23种)和羽苔科(19种)。 通过对这些种地理成分的统计,发现秦岭苔类的地理成分以北温带成分为主,占35.05%;其次是东亚成分占到31.78%,这两种地理成分在秦岭占了很大比例,高达66.83%。热带成分相对较少,有22种,占到10.29%。对于苔类来说,中国特有成分在秦岭地区较多,已知有34种,占到15.89%。说明秦岭地区苔类地理成分以温带为主,热带成分占少量比例,且秦岭地区的特有性也比较高。 文章第二部分是对中国剪叶苔属Herbertus S. Gray的分类学修订。剪叶苔属隶属于剪叶苔科,是一个古老而自然的类群,广泛分布于热带和南北温带地区。剪叶苔属植物由于其叶横生或近于横生,侧叶2裂,腹叶2裂或部分不对称3裂,并具假肋,叶细胞具大的三角体而明显区别于苔类的其它属。虽然这个属的概念比较清楚,但在属内种间的划分上存在较大的问题,是苔类中分类较混乱的一个类群。剪叶苔属种的概念多基于叶片形态,包括裂瓣的顶端细胞和假肋的形态及叶基盘边缘附属物的形态。但这些形态特征具很大的可塑性,性状不稳定,造成该属种的概念很模糊。目前全世界剪叶苔属约100余种。中国剪叶苔属的种类尚不确定,《中国苔藓志》中报道了中国有25种l亚种,但Juslen在2006年对亚洲剪叶苔属的修订中,提到中国分布的仅有6种。二者的研究中都存在有一些疏漏和不足之处,对有些种还有争议;且他们的研究中引证的标本都很少,不能全面反映中国剪叶苔属的种类和分布情况。 本研究着手于中国的剪叶苔属,从模式标本入手,从模式标本入手,结合对前人文献中引证标本的查阅,并检视了全国各大标本馆收藏的大量该属的普通标本,对于分类归并上有争议的种,采用扫描电镜和分子生物学的手段进行实验性的研究,对中国的剪叶苔属进行一个全面系统的分类学修订。期望通过本研究,明确中国剪叶苔属的种类和分布情况,为东亚乃至世界剪叶苔属的分类修订提供一份翔实的资料。共查阅了剪叶苔属26个种的模式标本,并检视了中科院北京植物研究所、华南植物园和深圳仙湖植物园馆藏的大量该属植物标本,约600余份。 通过本研究,提出2个新异名:将H. buchii Juslén和H. longispinus var calvs Massalongo处理为H. dicranus (Taylor) Trevis.;将樱井剪叶苔H. sakuraii (Warnst.) S. Hatt.(原并入H. dicranus)和H. minimus Horik.(原并入H. dicranus)重新提出;发现1个中国新分布:H. setigerus (Steph.) H. A. Mill.;确认中国的剪叶苔属17种1亚种:剪叶苔H. aduncus (Dicks.) Gray,剪叶苔纤细亚种H. aduncus subsp. tenuis (A. Evans) H. A. Mill.et E. B. Bohrer,H. armitanus (Steph.) H. A. Mill.,南亚剪叶苔H. ceylanicus (Steph.) Abeyw.,长角剪叶苔H. dicranus (Taylor) Trevis.,高氏剪叶苔H. gaochienii Fu,广东剪叶苔H. guangdongii P.J. Lin & Piippo,卵叶剪叶苔H. herpocladioides Scott. et. Miller,红枝剪叶苔H. huerlimannii Miller,细指剪叶苔H. kurzii (Steph.) H. A. Mill.,长肋剪叶苔H. longifissus Steph.,长刺剪叶苔H. longispinus Jack et Steph.,H. minimus Horik.,长茎剪叶苔H. parisii (Steph.) H. A. Mill.,多枝剪叶苔H. ramosus (Steph.) H. A. Mill.,樱井剪叶苔H. sakuraii (Warnst.) S. Hatt.,短叶剪叶苔H. sendtneri (Nees) Lindb.和H. setigerus (Steph.) H. A. Mill.。本研究还在扫描电镜下观察了H. armitanus、长角剪叶苔H. dicranus和多枝剪叶苔H. ramosus的孢子形态。对于剪叶苔属的修订,还需要更多模式标本的借阅,随着研究深入,剪叶苔属的种类可能会有大量的减少,中国剪叶苔属的种类也将会有一定的减少。
Resumo:
Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives.
Resumo:
Plant phototropism, the ability to bend toward or away from light, is predominantly controlled by blue-light photoreceptors, the phototropins. Although phototropins have been well-characterized in Arabidopsis thaliana, their evolutionary history is largely unknown. In this study, we complete an in-depth survey of phototropin homologs across land plants and algae using newly available transcriptomic and genomic data. We show that phototropins originated in an ancestor of Viridiplantae (land plants + green algae). Phototropins repeatedly underwent independent duplications in most major land-plant lineages (mosses, lycophytes, ferns, and seed plants), but remained single-copy genes in liverworts and hornworts-an evolutionary pattern shared with another family of photoreceptors, the phytochromes. Following each major duplication event, the phototropins differentiated in parallel, resulting in two specialized, yet partially overlapping, functional forms that primarily mediate either low- or high-light responses. Our detailed phylogeny enables us to not only uncover new phototropin lineages, but also link our understanding of phototropin function in Arabidopsis with what is known in Adiantum and Physcomitrella (the major model organisms outside of flowering plants). We propose that the convergent functional divergences of phototropin paralogs likely contributed to the success of plants through time in adapting to habitats with diverse and heterogeneous light conditions.
Resumo:
Heras-Ibáñez. J. de las, J., Ros. R. M.~ & Guerra, J. Bryophyiic flora and vegetation of ¡he Sierra del Relumbrar (SW of A/bace¡e, Spainj Lazaroa 11: 149-175 (1989). A brophytic and phytosociologic study of the Sierra del Relumbrar (SW of Albacete, Spain) is made. The caíalogue presenís 136 taxa (23 liverworts and 133 mosses). It includes 34 new [br Albacete province and 19 [br he SE ol? Spain. Bryophytic conirnunities are analysed. Sorne of ihem can be assignated to previously known associations in the Iberian Peninsula and a new one is described.
Resumo:
Plants that form ericoid mycorrhizal associations are widespread in harsh habitats. Ericoid mycorrhizal fungal endophytes are a genetically diverse group, and they appear to be able to alleviate certain environmental stresses and so facilitate the establishment and survival of Ericaceae. Some of the fungal taxa that form ericoid mycorrhizas, or at least closely related strains, also form associations with other plant hosts (trees and leafy liverworts). The functional significance of these associations and putative mycelial links between Ericaceae and other plant taxa, however, remain unclear. Evidence from environments that are contaminated by toxic metals indicates that ericoid mycorrhizal fungal endophytes, and in some instances their plant hosts, can evolve resistance to these metals. The apparent ability of these endophytes to develop resistance enables ericoid mycorrhizal plants to colonize polluted soil. This seems to be a major factor in the success of ericoid mycorrhizal taxa in a range of harsh environments.
Resumo:
This release of the Catalogue of Life contains contributions from 132 databases with information on 1,352,112 species, 114,069 infraspecific taxa and also includes 928,147 synonyms and 408,689 common names covering the following groups: Viruses • Viruses and Subviral agents from ICTV_MSL UPDATED! Bacteria and Archaea from BIOS Chromista • Chromistan fungi from Species Fungorum Protozoa • Major groups from ITIS Regional, • Ciliates from CilCat, • Polycystines from WoRMS Polycystina UPDATED!, • Protozoan fungi from Species Fungorum and Trichomycetes database • Slime moulds from Nomen.eumycetozoa.com Fungi • Various taxa in whole or in part from CABI Bioservices databases (Species Fungorum, Phyllachorales, Rhytismatales, Saccharomycetes and Zygomycetes databases) and from three other databases covering Xylariaceae, Glomeromycota, Trichomycetes, Dothideomycetes • Lichens from LIAS UPDATED! Plantae (Plants) • Mosses from MOST • Liverworts and hornworts from ELPT • Conifers from Conifer Database • Cycads and 6 flowering plant families from IOPI-GPC, and 99 families from WCSP • Plus individual flowering plants families from AnnonBase, Brassicaceae, ChenoBase, Droseraceae Database, EbenaBase, GCC UPDATED!, ILDIS UPDATED!, LecyPages, LHD, MELnet UPDATED!, RJB Geranium, Solanaceae Source, Umbellifers. Animalia (Animals) • Marine groups from URMO, ITIS Global, Hexacorals, ETI WBD (Euphausiacea), WoRMS: WoRMS Asteroidea UPDATED!, WoRMS Bochusacea UPDATED!, WoRMS Brachiopoda UPDATED!, WoRMS Brachypoda UPDATED!, WoRMS Brachyura UPDATED!, WoRMS Bryozoa UPDATED!, WoRMS Cestoda NEW!, WoRMS Chaetognatha UPDATED!, WoRMS Cumacea UPDATED!, WoRMS Echinoidea UPDATED!, WoRMS Gastrotricha NEW!, WoRMS Gnathostomulida NEW!, WoRMS Holothuroidea UPDATED!, WoRMS Hydrozoa UPDATED!, WoRMS Isopoda UPDATED!, WoRMS Leptostraca UPDATED!, WoRMS Monogenea NEW!, WoRMS Mystacocarida UPDATED!, WoRMS Myxozoa NEW!, WoRMS Nemertea UPDATED!, WoRMS Oligochaeta UPDATED!, WoRMS Ophiuroidea UPDATED!, WoRMS Phoronida UPDATED!, WoRMS Placozoa NEW!, WoRMS Polychaeta UPDATED!, WoRMS Polycystina UPDATED!, WoRMS Porifera UPDATED!, WoRMS Priapulida NEW!, WoRMS Proseriata and Kalyptorhynchia UPDATED!, WoRMS Remipedia UPDATED!, WoRMS Scaphopoda UPDATED!, WoRMS Tanaidacea UPDATED!, WoRMS Tantulocarida UPDATED!, WoRMS Thermosbaenacea UPDATED!, WoRMS Trematoda NEW!, WoRMS Xenoturbellida UPDATED! • Rotifers, mayflies, freshwater hairworms, planarians from FADA databases: FADA Rotifera UPDATED!, FADA Ephemeroptera NEW!, FADA Nematomorpha NEW! & FADA Turbellaria NEW! • Entoprocts, water bears from ITIS Global • Spiders, scorpions, ticks & mites from SpidCat via ITIS UPDATED!, SalticidDB , ITIS Global, TicksBase, SpmWeb BdelloideaBase UPDATED! & Mites GSDs: OlogamasidBase, PhytoseiidBase, RhodacaridBase & TenuipalpidBase • Diplopods, centipedes, pauropods and symphylans from SysMyr UPDATED! & ChiloBase • Dragonflies and damselflies from Odonata database • Stoneflies from PlecopteraSF UPDATED! • Cockroaches from BlattodeaSF UPDATED! • Praying mantids from MantodeaSF UPDATED! • Stick and leaf insects from PhasmidaSF UPDATED! • Grasshoppers, locusts, katydids and crickets from OrthopteraSF UPDATED! • Webspinners from EmbiopteraSF UPDATED! • Bark & parasitic lices from PsocodeaSF NEW! • Some groups of true bugs from ScaleNet, FLOW, COOL, Psyllist, AphidSF UPDATED! , MBB, 3i Cicadellinae, 3i Typhlocybinae, MOWD & CoreoideaSF NEW!• Twisted-wing parasites from Strepsiptera Database UPDATED! • Lacewings, antlions, owlflies, fishflies, dobsonflies & snakeflies from LDL Neuropterida • Some beetle groups from the Scarabs UPDATED!, TITAN, WTaxa & ITIS Global • Fleas from Parhost • Flies, mosquitoes, bots, midges and gnats from Systema Dipterorum, CCW & CIPA • Butterflies and moths from LepIndex UPDATED!, GloBIS (GART) UPDATED!, Tineidae NHM, World Gracillariidae • Bees & wasps from ITIS Bees, Taxapad Ichneumonoidea, UCD, ZOBODAT Vespoidea & HymIS Rhopalosomatidae NEW!• Molluscs from WoRMS Mollusca NEW!, FADA Bivalvia NEW!, MolluscaFW NEW! & AFD (Pulmonata) • Fishes from FishBase UPDATED! • Reptiles from TIGR Reptiles • Amphibians, birds and mammals from ITIS Global PLUS additional species of many groups from ITIS Regional, NZIB and CoL China NEW!
Resumo:
Foram encontradas 19 espécies de briófitas, sendo 14 espécies de musgos e 5 espécies de hepáticas, cobrindo uma maior extensão de rochas das margens que do centro do leito do rio. As rochas das margens do rio, bem üuminadas, porém sem receber luz direta do sol, apresentaram uma maior número de espécies, muito emaranhadas entre si. Já as rochas do centro do leito do rio, iluminadas pela luz direta do sol, apresentaram um menor número de espécies, formando tufos isolados ou pouco emaranhados entre si.
Resumo:
Although widespread among fungi, lichens, liverworts, and mosses, seed dispersal mechanisms operated by rain are unusual among flowering plants. Generally speaking, two mechanisms are involved in seed dispersal by rains: the splash-cup and the springboard. Here we describe a new seed dispersal mechanism operated by rain in a Neotropical rainforest herb Bertolonia mosenii Cogniaux (Melastomataceae). The study was carried out at the lowland Atlantic rainforest, southeastern Brazil. We experimentally demonstrate that rain is necessary to release the seeds from the capsules through what we call squirt-corner seed dispersal mechanism: when a raindrop strikes the mature fruit, the water droplet forces the seeds outward to the angles (corners) of the triangular capsule and the seeds are released. As far as we know squirt-corner represents a new rain-operated seed dispersal mechanism, and a novel seed dispersal mode both for Melastomataceae and for flowering plants from Neotropical forests.
Resumo:
While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity.
Resumo:
Recent Pan-Arctic shrub expansion has been interpreted as a response to a warmer climate. However, herbivores can also influence the abundance of shrubs in arctic ecosystems. We addressed these alternative explanations by following the changes in plant community composition during the last 10 years in permanent plots inside and outside exclosures with different mesh sizes that exclude either only reindeer or all mammalian herbivores including voles and lemmings. The exclosures were replicated at three forest and tundra sites at four different locations along a climatic gradient (oceanic to continental) in northern Fennoscandia. Since the last 10 years have been exceptionally warm, we could study how warming has influenced the vegetation in different grazing treatments. Our results show that the abundance of the dominant shrub, Betula nana, has increased during the last decade, but that the increase was more pronounced when herbivores were excluded. Reindeer have the largest effect on shrubs in tundra, while voles and lemmings have a larger effect in the forest. The positive relationship between annual mean temperature and shrub growth in the absence of herbivores and the lack of relationships in grazed controls is another indication that shrub abundance is controlled by an interaction between herbivores and climate. In addition to their effects on taller shrubs (> 0.3 m), reindeer reduced the abundance of lichens, whereas microtine rodents reduced the abundance of dwarf shrubs (< 0.3 m) and mosses. In contrast to short-term responses, competitive interactions between dwarf shrubs and lichens were evident in the long term. These results show that herbivores have to be considered in order to understand how a changing climate will influence tundra ecosystems.
Resumo:
Little is known about the impact of changing temperature regimes on composition and diversity of cryptogam communities in the Arctic and Subarctic, despite the well-known importance of lichens and bryophytes to the functioning and climate feedbacks of northern ecosystems. We investigated changes in diversity and abundance of lichens and bryophytes within long-term (9-16 years) warming experiments and along natural climatic gradients, ranging from Swedish subarctic birch forest and subarctic/subalpine tundra to Alaskan arctic tussock tundra. In both Sweden and Alaska, lichen diversity responded negatively to experimental warming (with the exception of a birch forest) and to higher temperatures along climatic gradients. Bryophytes were less sensitive to experimental warming than lichens, but depending on the length of the gradient, bryophyte diversity decreased both with increasing temperatures and at extremely low temperatures. Among bryophytes, Sphagnum mosses were particularly resistant to experimental warming in terms of both abundance and diversity. Temperature, on both continents, was the main driver of species composition within experiments and along gradients, with the exception of the Swedish subarctic birch forest where amount of litter constituted the best explanatory variable. In a warming experiment in moist acidic tussock tundra in Alaska, temperature together with soil ammonium availability were the most important factors influencing species composition. Overall, dwarf shrub abundance (deciduous and evergreen) was positively related to warming but so were the bryophytes Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi; the majority of other cryptogams showed a negative relationship to warming. This unique combination of intercontinental comparison, natural gradient studies and experimental studies shows that cryptogam diversity and abundance, especially within lichens, is likely to decrease under arctic climate warming. Given the many ecosystem processes affected by cryptogams in high latitudes (e.g. carbon sequestration, N2-fixation, trophic interactions), these changes will have important feedback consequences for ecosystem functions and climate.