962 resultados para Liquid crystal polymers
Resumo:
A series of methacrylate-based side-chain liquid crystal polymers has been prepared with a range of molecular weights. For the high molecular weight polymers a smectic phase is observed with a very narrow nematic range; however, for low molecular weight polymers only the nematic phase is observed. A marked reduction in the glass transition temperature, TSN and TNI is observed with a reduction in the molecular weight. The orientational order parameters for these polymers in the liquid crystal phase have been determined using infra-red dichroism. It is found that the higher the molecular weight of the polymer, the greater is the threshold voltage of the electro-optic response and the lower the order parameter. The increase in the threshold voltage with increasing molecular weight may be related to the intrinsic curvature elasticity and hence to the coupling between the mesogenic units and the polymer backbone.
Resumo:
The levels of alignment of the mesogenic units and of the polymer backbone trajectory for polyacrylate based nematic side-chain liquid crystal polymers and elastomers were evaluated by using wide angle X-ray and small angle neutron scattering procedures. The X-ray scattering measurements show that substantial levels of preferred orientation of the mesogenic units may be introduced through magnetic fields for uncrosslinked polymers and through mechanical extension for liquid crystal elastomers. Small angle neutron scattering measurements show that for highly aligned samples an anisotropic polymer backbone trajectory is observed in which the envelope is slightly extended by ∼ 10% in the direction parallel to the axis of alignment of the mesogenic units. The sense of this coupling differs from that recorded for other uncrosslinked side-chain liquid crystal polymers. Possible mechanisms to account for this anisotropy and its relationship to the properties of liquid crystal elastomers are discussed. The observed deformation behaviour of the liquid crystal elastomer is non-affine and this appears to confirm the dominating influence of the liquid crystal order of the side chains on the mechanical properties of these novel networks.
Resumo:
The homologous series of side chain liquid crystal polymers, the poly[x-(4-methoxyazobenzene- 40-oxy)alkyl methacrylate]s, has been prepared in which the length of the flexible alkyl spacer has been varied from 3 to 11 methylene units. All the polymers exhibit liquid crystalline behaviour. The propyl and butyl members show exclusively nematic behaviour. The pentyl, hexyl, octyl and decyl members show a nematic and a smectic A phase while the heptyl, nonyl and undecyl homologues exhibit only a smectic A phase. The smectic A phase has been studied using X-ray diffraction and assigned as a smectic A1 phase in which the side chains are fully overlapped and the backbones are confined to lie between the smectic layers. For the nonyl member an incommensurate smectic phase is observed. The dependence of the transition temperatures on the length of the flexible spacer is understood in terms of the average shapes of the side chains.
Resumo:
X-ray Rheology is an experimental technique which uses time-ressolved x-ray scattering as probe of the molecular level structural reorganisation which accompanies flow. It provides quantitative information on the direction alignment and on the level of global orientation. This information is very helpful in interpreting the classic rheological data on liquid crystal polymers. In this research we use data obtained from a cellulose derivate which exhibits a thermotropic liquid crystal phase. We show how increased shear rates lead to a rapid rise in the global orientation and we related this to therories of flow in liquid crystal polymers from the literature. We show that the relaxation time is independent of the prior shear rate.
Resumo:
During this work, done mainly in the laboratories of the department of Industrial Chemistry and Materials of the University of Bologna but also in the laboratories of the Carnegie Mellon University in collaboration with prof. K. Matyjaszewski and at the university of Zaragoza in collaboration with prof. J. Barberá, was focused mainly on the synthesis and characterization of new functional polymeric materials. In the past years our group gained a deep knowledge about the photomodulation of azobenzene containing polymers. The aim of this thesis is to push forward the performances of these materials by the synthesis of well defined materials, in which, by a precise control over the macromolecular structures, better or even new functionality can be delivered to the synthesized material. For this purpose, besides the rich photochemistry of azoaromatic polymers that brings to the application, the control offered from the recent techniques of controlled radical polymerization, ATRP over all, gives an enormous range of opportunity for the developing of a new generation of functional materials whose properties are determinate not only by the chemical nature of the functional center (e.g. azoaromatic chromophore) but are tuned and even amplified by a synergy with the whole macromolecular structure. Old materials in new structures. In this contest the work of this thesis was focused mainly on the synthesis and characterization of well defined azoaromatic polymers in order to establish, for the first time, precise structure-properties correlation. In fact a series of well defined different azopolymers, chiral and achiral, with different molecular weight and highly monodisperse were synthesized and their properties were studied, in terms of photoexpansion and photomodulation of chirality. We were then able to study the influence of the macromolecular structure in terms of molecular weight and ramification on the studied properties. The huge amount of possibility offered by the tailoring of the macromolecular structure were exploited for the synthesis of new cholesteric photochromic polymers that can be used as a smart label for the certification of the thermal history of any thermosensitive product. Finally the ATRP synthesis allowed us to synthesize a total new class of material, named molecular brushes: a flat surface covered with an ultra thin layer of polymeric chain covalently bond onto the surface from one end. This new class of materials is of extreme interest as they offer the possibility to tune and manage the interaction of the surface with the environment. In this contest we synthesized both azoaromatic surfaces, growing directly the polymer from the surface, and mixed brushes: surfaces covered with incompatible macromolecules. Both type of surfaces acts as “smart” surfaces: the first it is able to move the orientation of a LC cell by simply photomodulation and, thanks to the robustness of the covalent bond, can be used as a command surface overcoming all the limitation due to the dewetting of the active layer. The second type of surface, functionalized by a grafting-to method, can self assemble the topmost layer responding to changed environmental conditions, exposing different functionality according to different environment.
Resumo:
Side chain liquid crystal polymers and elastomers exhibit a rich phase behaviour which arises from the antagonistic influences of the entropically disordered polymer chain configuration and the long range orientational ordering of the mesogenic units. This competition arises since the natural macroscopic phase separation is inhibited by the inherent chemical connectivity of the system. At the heart of this connectivity is the spacer link and we consider here its influence on the phase behaviour. In particular we consider a series of elastomers in which the number of alkyl units in the spacer is systematically varied from 2 to 6. The lengthening of the coupling spacer is accompanied by an alternation of the sign of coupling between the polymer chain and the mesogenic unit. These results demonstrate the dominating influence of the so-called hinge effect in determining the phase behaviour. In addition to the alternation of the sign there is some decrease in the magnitude of the coupling with increasing spacer length.
Resumo:
Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system's structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s(-1) where investigated using a Taylor-Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.
Resumo:
A range of side chain liquid crystal copolymers have been prepared using mesogenic and non-mesogenic units. It is found that high levels of the non-mesogenic moieties may be introduced without completely disrupting the organization of the liquid crystal phase. Incorporation of this comonomer causes a marked reduction in the glass transition temperature (Tg), presumably as a result of enhanced backbone mobility and a corresponding lowering of the nematic transition temperature, thereby restricting the temperature range for stability of the liquid crystal phase. The effect of the interactions between the various components of these side-chain polymers on their electro-optic responses is described. Infrared (i.r.) dichroism measurements have been made to determine the order parameters of the liquid crystalline side-chain polymers. By identifying a certain band (CN stretching) in the i.r. absorption spectrum, the order parameter of the mesogenic groups can be obtained. The temperature and composition dependence of the observed order parameter are related to the liquid crystal phase transitions and to the electro-optic response. It is found that the introduction of the non-mesogenic units into the polymer chain lowers the threshold voltage of the electro-optic response over and above that due to the reduction in the order parameter. The dynamic electro-optic responses are dominated by the temperature-dependent viscosity and evidence is presented for relaxation processes involving the polymer backbone which are on a time scale greater than that for the mesogenic side-chain units.
Resumo:
A series of chain liquid crystalline copolymers of 4-cyanophenyl 4′-(6-methacryloyloxyhexyloxy)benzoate and 2-methacryloyloxyethyl β-(1-naphthyl)-propenoate were prepared by free radical polymerization. The corresponding polyacrylates could not be prepared in the same way and an alternative method was used for their preparation involving the synthesis of copolymers of the mesogenic monomer and 2-hydroxyethyl acrylate followed by treatment of the resulting polymers with β-(1-naphthyl)propenoyl chloride. The materials are of interest as photoactive liquid crystalline polymers. The effect of introducing a bulky nonmesogenic group into a liquid crystalline copolymer generally lowers the clearing temperature and raises Tg but also gives rise to contrasting phase behaviour in these two series of polymers. Polymethacrylates which show mesomorphism have sharp transitions and continue to exhibit a highly ordered smectic phase over the bulk of their liquid crystal range. Polyacrylates, on the other hand, exhibit a weakening and broadening-out of their thermal transitions consistent with a lowering of order. These results emphasize the effect of the polymer backbone on phase behaviour.
Resumo:
Women often develop vaginal infections that are caused primarily by organisms of the genus Candida. The current treatments of vaginal candidiasis usually involve azole-based antifungals, though fungal resistance to these compounds has become prevalent. Therefore, much attention has been given to molecules with antifungal properties from natural sources, such as curcumin (CUR). However, CUR has poor solubility in aqueous solvents and poor oral bioavailability. This study attempted to overcome this problem by developing, characterizing, and evaluating the in vitro antifungal action of a CUR-loaded liquid crystal precursor mucoadhesive system (LCPM) for vaginal administration. A low-viscosity LCPM (F) consisting of 40% wt/wt polyoxpropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, 50% wt/wt oleic acid, and 10% wt/wt chitosan dispersion at 0.5% with the addition of 16% poloxamer 407 was developed to take advantage of the lyotropic phase behavior of this formulation. Notably, F could transform into liquid crystal systems when diluted with artificial vaginal mucus at ratios of 1:3 and 1:1 (wt/wt), resulting in the formation of F30 and F100, respectively. Polarized light microscopy and rheological studies revealed that F behaved like an isotropic formulation, whereas F30 and F100 behaved like an anisotropic liquid crystalline system (LCS). Moreover, F30 and F100 presented higher mucoadhesion to porcine vaginal mucosa than F. The analysis of the in vitro activity against Candida albicans revealed that CUR-loaded F was more potent against standard and clinical strains compared with a CUR solution. Therefore, the vaginal administration of CUR-loaded LCPMs represents a promising platform for the treatment of vaginal candidiasis.
Resumo:
Liquid Crystal Polymer Brushes and their Application as Alignment Layers in Liquid Crystal Cells Polymer brushes with liquid crystalline (LC) side chains were synthesized on planar glass substrates and their nematic textures were investigated. The LC polymers consist of an acrylate or a methacrylate main chain and a phenyl benzoate group as the mesogenic unit which is connected to the main chain via a flexible alkyl spacer composed of six CH2 units. The preparation of the LC polymer brushes was carried out according to the grafting from technique: polymerization is carried out from azo-initiators that have been previously self-assembled on the substrate. LC polymer brushes with a thickness from a few nm to 230 nm were synthesized by varying the monomer concentration and the polymerization time. The LC polymer brushes were thick enough to allow for direct observation of the nematic textures with a polarizing microscope. The LC polymer brushes grown on untreated glass substrates exhibited irregular textures (polydomains). The domain size is in the range of some micrometers and depends only weakly on the brush thickness. The investigations on the texture-temperature relationship of the LC brushes revealed that the brushes exhibit a surface memory effect, that is, the identical texture reappears after the LC brush sample has experienced a thermal isotropization or a solvent treatment, at which the nematic LC state has been completely destroyed. The surface memory effect is attributed to a strong anchoring of the orientation of the mesogenic units to heterogeneities at the substrate surface. The exact nature of the surface heterogeneities is unknown. The effect was observed for the LC brushes swollen with low molecular weight nematic molecules, as well. Rubbing the glass substrate with a piece of velvet cloth prior to the surface modification with the initiator and the brush growth gives rise to the formation of homogenous alignment of the mesogenic units in the LC polymer side chains. Monodomain textures were obtained for these LC brushes. The mechanism for the homogeneous alignment is based on the transfer of Nylon fibers during the rubbing process. A surfactant was mixed with the azo-initiator in modifying rubbed substrates for subsequent brush generation. Such brushes exhibited biaxial optical properties. Hybrid LC cells made from a substrate modified with biaxial brushes and a rubbed glass substrate show an orientation with a tilt angle of a = 15.6 . This work shows that LC brushes grown on rubbed surfaces fulfill the important criteria for alignment layers: the formation of macroscopic monodomains. First results indicate that by diluting the brush with molecules which are also covalently bound to the surface but induce a different orientation, a system is obtained in which the two conflicting alignment mechanisms can be used to generate a tilted alignment. In order to allow for an application of the alignment layers into a potential product, subsequent work should focus on the questions how easy and in which range the tilt angle can be controlled.
Resumo:
Liquid crystals (LCs) are an interesting class of soft condensed matter systems characterized by an unusual combination of fluidity and long-range order, mainly known for their applications in displays (LCDs). However, the interest in LC continues to grow pushed by their application in new technologies in medicine, optical imaging, micro and nano technologies etc. In LCDs uniaxial alignment of LCs is mainly achieved by a rubbing process. During this treatment, the surfaces of polymer coated display substrates are rubbed in one direction by a rotating cylinder covered with a rubbing cloth. Basically, LC alignment involves two possible aligning directions: uniaxial planar (homogeneous) and vertical (homeotropic) to the display substrate. An interesting unresolved question concerning LCs regards the origin of their alignment on rubbed surfaces, and in particular on the polymeric ones used in the display industry. Most studies have shown that LCs on the surface of the rubbed polymer film layer are lying parallel to the rubbing direction. In these systems, micrometric grooves are generated on the film surface along the rubbing direction and also the polymer chains are stretched in this direction. Both the parallel aligned microgrooves and the polymer chains at the film surface may play a role in the LC alignment and it is not easy to quantify the effect of each contribution. The work described in this thesis is an attempt to find new microscopic evidences on the origin of LC alignment on polymeric surfaces through molecular dynamics (MD) simulations, which allow the investigation of the phenomenon with atomic detail. The importance of the arrangement of the polymeric chains in LCs alignment was studied by performing MD simulations of a thin film of a typical nematic LC, 4-cyano-4’-pentylbiphenyl (5CB), in contact with two different polymers: poly(methyl methacrylate)(PMMA) and polystyrene (PS). At least four factors are believed to influence the LC alignment: 1. the interactions of LCs with the backbone vinyl chains; 2. the interactions of LCs with the oriented side groups; 3. the anisotropic interactions of LCs with nanometric grooves; 4. the presence of static surface charges. Here we exclude the effect of microgrooves and of static surface charges from our virtual experiment, by using flat and neutral polymer surfaces, with the aim of isolating the chemical driving factors influencing the alignment of LC phases on polymeric surfaces.
Resumo:
El presente trabajo de Tesis se ha centrado en el diseño, fabricación y caracterización de dispositivos basados en fibras de cristal fotónico infiltrado selectivamente con cristales líquidos, polímeros y una mezcla de ambos. Todos los dispositivos son sintonizables, y su área de aplicación se centra en comunicaciones ópticas y sensores. La manipulación y fusionado de fibras fotónicas, el llenado selectivo de determinadas cavidades y la alineación recíproca de fibras mantenedoras de polarización son tareas muy específicas y delicadas para las que se requieren protocolos muy estrictos. Previo a la fabricación de dispositivos ha sido necesaria por tanto una tarea de sistematización y creación de protocolos de fabricación. Una vez establecidos se ha procedido a la fabricación y caracterización de dispositivos. Los dispositivos fabricados se enumeran a continuación para posteriormente detallar una a una las singularidades de cada uno. • Interferómetros intermodales hechos a partir de una porción de fibra fotónica soldada entre dos fibras estándar, bien monomodo o PANDA (mantenedora de polarización). Estos interferómetros han sido sumergidos o bien llenados selectivamente con cristales líquidos para así sintonizar la señal interferométrica guiada a través de la fibra. • Infiltración de fibras fotónicas con cristales líquidos colestéricos con especial énfasis en la fase azul (blue phase) de estos materiales. Las moléculas de cristal líquido se autoalinean en volumen por lo que la infiltración de fibras fotónicas con estos cristales líquidos es muy interesante, pues es conocida la dificultad de alinear apropiadamente cristales líquidos dentro de cavidades micrométricas de las fibras fotónicas. • Grabación de redes holográficas de forma selectiva en las cavidades de una fibra fotónica. Estas redes holográficas, llamadas POLICRYPS (POlymer-LIquid CRYstal-Polymer Slices), son redes fabricadas a base de franjas de polímero y cristal líquido alineado perpendicularmente a dichas franjas. Las franjas son a su vez perpendiculares al eje de la fibra como lo puede ser una red de Bragg convencional. El cristal líquido, al estar alineado perpendicularmente a dichos franjas y paralelo al eje de la fibra, se puede conmutar aplicando un campo eléctrico externo, modificando así el índice efectivo de la red. Se puede fabricar por lo tanto una red de Bragg sintonizable en fibra, muy útil en comunicaciones ópticas. • Llenado selectivo de fibras fotónicas con polidimetilsiloxano (PDMS), un polímero de tipo silicona. Si se realiza un llenado selectivo asimétrico se puede inducir birrefringencia en la fibra. El índice de refracción del PDMS tiene una fuerte dependencia térmica, por lo que se puede sintonizar la birrefringencia de la fibra. • Estudio teórico de llenado selectivo de fibras fotónicas con PDMS dopado con nanopartículas de plata de 5, 40 y 80 nm. Estas nanopartículas poseen un pico de absorción en torno a los 450 nm debido a resonancias superficiales localizadas de plasmones (LSPR). La resonancia del plasmon tiene una fuerte dependencia con el índice de refracción del material colindante, y al ser éste PDMS, la variación de índice de refracción se ve amplificada, obteniendo una absorción sintonizable. Se ha propuesto la fabricación de polarizadores sintonizables usando esta técnica. Como ya se ha dicho, previamente a la fabricación ha sido necesaria la protocolización de diversos procedimientos de fabricación de alta complejidad, así como protocolizar el proceso de toma de medidas para optimizar los resultados. Los procedimientos que han requerido la formulación de protocolos específicos han sido los siguientes: • Llenado selectivo de cavidades en una fibra fotónica. Dichas fibras tienen generalmente un diámetro externo de 125 μm, y sus cavidades son de entre 5 y 10 μm de diámetro. Se han desarrollado tres técnicas diferentes para el llenado/bloqueado selectivo, pudiéndose combinar varios protocolos para la optimización del proceso. Las técnicas son las siguientes: o Llenado y bloqueado con un prepolímero. Dicho prepolímero, también llamado adhesivo óptico, está inicialmente en estado líquido y posee una cierta viscosidad. Las cavidades de la fibra fotónica que se desea llenar o bloquear poseen un diámetro diferente al resto, por lo que en el proceso de llenado aparecen dos frentes de llenado dependientes de su diámetro. A mayor diámetro, mayor velocidad de llenado. Polimerizando cuando existe dicha diferencia en los frentes se puede cortar por medio, obteniendo así una fibra parcialmente bloqueada. o Colapsamiento de las cavidades de menor diámetro mediante aplicación de calor. El calor producido por un arco voltaico de una soldadora de fibra estándar fusiona el material exterior de la fibra produciendo el colapsamiento de las cavidades de menor diámetro. En esta técnica también es necesaria una diferencia de diámetros en las cavidades de la fibra. o Bloqueo una a una de las cavidades de la fibra fotónica con adhesivo óptico. Este procedimiento es muy laborioso y requiere mucha precisión. Con este sistema se pueden bloquear las cavidades deseadas de una fibra sin importar su diámetro. • Alineación de una fuente de luz linealmente polarizada con una fibra mantenedora de polarización ya sea PANDA o fotónica. Así mismo también se han alineado entre sí fibras mantenedoras de polarización, para que sus ejes rápidos se fusionen paralelos y así el estado de polarización de la luz guiada se mantenga. • Sistematización de toma de medidas para caracterizar los interferómetros modales. Éstos son altamente sensibles a diversas variables por lo que el proceso de medida es complejo. Se deben aislar variables de forma estrictamente controlada. Aunque todos los dispositivos tienen en común el llenado selectivo de cavidades en una fibra fotónica cada dispositivo tiene sus peculiaridades, que van a ser explicadas a continuación. ABSTRACT The present Thesis has been centered in the design, fabrication and characterization of devices based on photonic crystal fibers selectively filled with liquid crystals, polymers and a mixture of both. All devices are tunable and their work field is optical communications and sensing The handling and splicing of photonic crystal fibers, the selective filling of their holes and the aligning of polarization maintaining fibers are very specific and delicate tasks for which very strict protocols are required. Before the fabrication of devices has therefore been necessary task systematization and creation of manufacturing protocols. Once established we have proceeded to the fabrication and characterization of devices. The fabricated devices are listed below and their peculiarities are detailed one by one: • Intermodal interferometers made with a portion of photonic crystal fiber spliced between two optical communication fiber pigtails, either single mode or PANDA (polarization-maintaining) fiber. These interferometers have been submerged or selectively filled with liquid crystals to tune the interferometric guided signal. • Infiltration of photonic fibers with cholesteric liquid crystals with special emphasis on their blue phase (blue phase). The liquid crystal molecules are self-aligning in volume so the infiltration of photonic fibers with these liquid crystals is very interesting. It is notoriously difficult to properly align liquid crystals within micron cavities such as photonic fibers. • Selectively recording of holographic gratings in the holes of photonic crystal fibers. These holographic gratings, called POLICRYPS (POlymer-LIquid CRYstal-Polymes Slices), are based on walls made of polymer and liquid crystal aligned perpendicular to them. These walls are perpendicular to the axis of the fiber as it can be a conventional Bragg grating. The liquid crystal is aligned perpendicular to the walls and parallel to the fiber axis, and can be switched by applying an external electric field and thus change the effective index of the grating. It is thus possible to manufacture a tunable Bragg grating fiber, useful in optical communications. •Asymmetrically selective filling of photonic crystal fibers with a silicone polymer like called polydimethylsiloxane (PDMS) to induce birefringence in the fiber. The refractive index of PDMS has temperature dependence, so that the birefringence of the fiber can be tuned. • Theoretical study of photonic crystal fibers selectively filled with PDMS doped with silver nanoparticles of 5, 40 and 80 nm. These nanoparticles have an absorption peak around 450 nm due to localized surface plasmon resonances (LSPR). Plasmon resonance has a strong dependence on the refractive index of the adjacent material, and as this is PDMS, the refractive index variation is amplified, obtaining a tunable absorption. Fabrication of tunable polarizers using this technique has been proposed. Before starting the fabrication, it has been necessary to optimize several very delicate procedures and different protocols have been designed. The most delicate procedures are as follows: • Selective filling of holes in a photonic crystal fiber. These fibers generally have an outer diameter of 125 μm, and their holes have a diameter around between 5 and 10 μm. It has been developed three different techniques for filling / selective blocking, and they can be combined for process optimization. The techniques are: o Filling and blocked with a prepolymer. This prepolymer also called optical adhesive is initially in liquid state and has a certain viscosity. The holes of the photonic crystal fiber that are desired to be filled or blocked should have a different diameter, so that in the filling process appear two different fronts depending on the hole diameter. The holes with larger diameter are filled faster. Then the adhesive is polymerized when there is such a difference on the front. A partially blocked fiber is obtained cutting between fronts. o Collapsing of holes of smaller diameter by application of heat. The heat produced by an arc of a standard fusion splicer fuses the outer fiber material producing the collapsing of the cavities of smaller diameter. In this technique also you need a difference of diameters in the fiber holes. o Blocking one by one the holes of photonic crystal fiber with optical adhesive. This procedure is very laborious and requires great precision. This system can block unwanted cavities regardless fiber diameter. • Aligning a linearly polarized light source with a polarization-maintaining fiber (either a PANDA fiber as a photonic crystal fiber). It is needed also an aligning between polarization-maintaining fibers, so that their fast axes parallel merge and that is state of polarization of light guided is maintained. • Systematization of taking measurements to characterize the modal interferometers. These are highly sensitive to several variables so the measurement process is very complicated. Variables must be fixed in a very controlled manner. Although all devices have the common characteristic of being selectively filled PCFs with some kind of material, each one has his own peculiarities, which are explained below.