1000 resultados para Liquid Circulation Velocity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ammonium nitrogen removal from a synthetic wastewater by nitrification and denitrification processes were performed in a sequencing batch biofilm reactor containing immobilized biomass on polyurethane foam with circulation of the liquid-phase. It was analyzed the effect of four external carbon sources (ethanol, acetate, carbon synthetic medium and methanol) acting as electron donors in the denitrifying process. The experiments were conducted with intermittent aeration and operated at 30+/-1 degrees C in 8-h cycles. The synthetic wastewater (100 mgCOD/L and 50 mgNH(4)(+)-N/L) was added batch-wise, while the external carbon sources were added fed-batch-wise during the periods where aeration was suspended. Ammonium nitrogen removal efficiencies obtained were 95.7, 94.3 and 97.5% for ethanol, acetate and carbon synthetic medium, respectively. As to nitrite, nitrate and ammonium nitrogen effluent concentrations, the results obtained were, respectively: 0.1, 5.7 and 1.4 mg/L for ethanol; 0.2, 4.1 and 1.8 mg/L for acetate and 0.2, 6.7 and 0.8 for carbon synthetic medium. On the other hand using methanol, even at low concentrations (50% of the stoichiometric value calculated for complete denitrification), resulted in increasing accumulation of nitrate and ammonium nitrogen in the effluent over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation has been performed on the effect of liquid phase recirculation velocity and increasing influent concentration on the stability and efficiency of an anaerobic sequencing batch reactor (ASBR) containing granular biomass. The reactor treated 1.3 L synthetic wastewater at 30 degrees C in 6 h cycles. Initially the effect of recirculation velocity was investigated employing velocities of 5, 7 and 10 m/h and influent concentration of 500 mg COD/L. At these velocities, filtered sample organic matter removal efficiencies were 83, 85 and 84%, respectively. A first order kinetic model could also be fitted to the experimental organic matter concentration profiles. The kinetic parameter values of this model were 1.35, 2.36 and 1.00 h(-1) at the recirculation velocities of 5, 7 and 10 m/h, respectively. The recirculation velocity of 7 m/h was found to be the best operating strategy and this value was maintained while the influent concentration was altered in order to verify system efficiency and stability at increasing organic load. Influent concentration of 1000 mg COD/L resulted in filtered sample organic matter removal efficiency of 80%, and a first order kinetic parameter value of 1.14 h(-1), whereas the concentration of 1500 mg COD/L resulted in an efficiency of 82% and a kinetic parameter value of 1.31 h(-1). (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic hydrodynamic parameters of an airlift reactor with internal loop were estimated experimentally and simulated using commercially available CFD software from Fluent. Circulation velocity in a 32-dm(3)-airlift reactor was measured using the magnetic tracer method, meanwhile the gas hold-up was obtained by analysis of the pressure drop using the method of inverted U-tube manometers. Comparison of simulated (in two and three dimensions) and experimental data was performed at different superficial gas velocities in the riser.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A distinctive design feature of steam boiler with natural circulation is the presence of the steam drum which plays a role of the separator of vapor from the flow of water-and-steam mixture coming into steam drum from the furnace tubes. Steam drum with unheated downcomer tubes, deducing from it, and riser (screen/furnace tubes) inside the furnace is a closed circulation loop in which movement of water (downcomer tubes) and water-and-steam mixture (riser tubes) is organized. The movement of the working fluid is appears due to occurrence of the natural pressure, determined by the difference in hydrostatic pressure and the mass of water and water-and-steam mixtures in downcomer and riser tubes and called the driving pressure of the natural circulation: S drive = H steam (ρ down + ρ mix) g where: ρ down - density of water in downcomer tubes; ρ mix - density of water in riser tubes; H steam - height of steam content section; g - acceleration of gravity. In steam boilers with natural circulation the circulation rate is usually between 10 and 30. Thus, consumption of water in the circulation circuit “circulation rate times” more than steam output of the boiler. There are two aspects of the design of natural water circulation loops. One is to ensure a sufficient mass flux of circulating water to avoid burnout of evaporator tubes. The other is to avoid tube wall temperature fluctuation and tube vibration due to oscillation of circulation velocity. The design criteria are therefore reduced, in principle, to those of critical heat flux, critical flow rate for burnout, and flow instability. In practical design, however, the circulation velocity and the void fraction at the evaporator tube outlet are used as the design criteria (Seikan I., et. al., 1999). This study has been made with assumption that the heat flux in the furnace of the boiler even all the time. The target of the study was to define the circulation rate of the boiler, thus average heat flux do not change it. I would like to acknowledge professionals from “Foster Wheeler” company for good and comfortable cooperation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A set of models in Aspen plus was built to simulate the direct synthesis process of hydrogen peroxide in a micro-reactor system. This process model can be used to carry out material balance calculation under various experimental conditions. Three thermodynamic property methods were compared by calculating gas solubility and Uniquac-RK method was finally selected for process model. Two different operation modes with corresponding operation conditions were proposed as the starting point of future experiments. Simulations for these two modes were carried out to get the information of material streams. Moreover, some hydrodynamic parameters such as gas/liquid superficial velocity, gas holdup were also calculated with improved process model. These parameters proved the proposed experimental conditions reasonable to some extent. The influence of operation conditions including temperature, pressure and circulation ratio was analyzed for the first operation mode, where pure oxygen was fed into dissolving tank and hydrogen-carbon dioxide mixture was fed into microreactor directly. The preferred operation conditions for the system are low temperature (2°C) and high pressure (30 bar) in dissolving tank. High circulation ratio might be good in the sense that more oxygen could be dissolved and fed into reactor for reactions, but meanwhile hydrodynamics of microreactor should be considered. Furthermore, more operation conditions of reactor gas/liquid feeds in both of two operation modes were proposed to provide guidance for future experiment design and corresponding hydrodynamic parameters were also calculated. Finally, safety issue was considered from thermodynamic point of view and there is no explosion danger at given experimental plan since the released reaction heat will not cause solvent vaporization inside the microchannels. The improvement of process model still needs further study based on the future experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aerobic internal-loop reactors use active biomass attached in a supporting media (biofilm) with the advantage of retaining a big biomass concentration in a small physical space, removing carbonaceous matter and nitrogen in only one reactor. Liquid circulation occurs due to hydrostatic pressure difference produced by air injection in the riser. In biphasic conditions liquid circulation velocities, gas holdup and oxygen transfer coefficient in four different reactor configurations were studied. For the three-phase conditions, the same parameters in just one of those configurations were evaluated. Also, there were three granular supporting media characterized. On the other hand, the relationship between internal and external tube areas and supporting media concentrations influence the liquid velocity, gas holdup and oxygen mass transfer values and some important supporting media characteristics were observed and compared.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work represents the proceedings of the fifteenth symposium which convened at Colorado State University on May 24, 1985. The two day meeting was scheduled one month later than usual, i.e., after the spring semester, so that travelers from the Midwest (Iowa State University, Kansas State University and University of Missouri) could enjoy the unique mountain setting provided at Pingree Park. The background of the photograph on the cover depicts the beauty of the area. ContentsGreg Sinton and S.M. Leo, KSU. Models for the Biodegration of 2.4-D and Related Xenobiotic Compounds. V. Bringi, CSU. Intrinsic Kinetics from a Novel Immobilized Cell CSTR. Steve Birdsell, CU. Novel Microbial Separation Techniques. Mark Smith, MU. Kinetic Characterization of Growth of E. coli on Glucose. Michael M. Meagher, ISU. Kinetic Parameters of Di- and Trisaccharaide Hydrolysis by Glucoamylase II. G.T. Jones and A.K. Ghosh Hajra, KSU. Modeling and Simulation of Legume Modules with Reactive Cores and Inert Shells. S.A. Patel and C.H. Lee, KSU. Energetic Analysis and Liquid Circulation in an Airlift Fermenter. Rod R. Fisher, ISU. The Effects of Mixing during Acid Addition of Fractionally Precipitated Protein. Mark M. Paige, CSU. Fed-batch Fermentations of Clostridium acetobutylicum. Michael K. Dowd, ISU. A Nonequilibirium Thermodynamic Description of the Variation of Contractile Velocity and Energy Use in Muscle. David D. Drury, CSU. Analysis of Hollow Fiber Bioreactor Performance for MAmmalian Cells by On-Line MMR. H.Y. Lee, KSU. Process Analysis of Photosynthetic Continuous Culture Systems. C.J. Wang, MU. Kinetic Consideration in Fermentation of Cheese Whey to Ethanol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies into gas-liquid flow patterns were carried out on commercial scale sieve trays where the ratio of froth depth to flow path length is typical of that found in practice. Experiments were conducted on a 2.44 m diameter air-water distillation simulator, in which flow patterns were investigated by direct observation, using directional flow pointers; by water cooling, to simulate mass transfer; and by height of clear liquid measurements across the tray. The flow rates used are typical of those found in practice. The approach adopted was to investigate the effect of the gas flow on the liquid flow by comparing water only flow patterns across an unperforated tray with air-water flow patterns on perforated trays. Initial gas-liquid contacting experiments on the 6.35 mm hole tray showed that, under certain conditions, the gas flow pattern beneath the test tray can have a significant effect on the tray liquid flow pattern such that gas-driven liquid circulation was produced. This was found to be a function of this particular air-water simulator design, and as far as is known this is the first time that this phenomenon has been observed. Consequently non-uniform gas flow effects were removed by modification of the gas distribution system. By eliminating gas circulation effects, the effect of the gas flow on the separation of liquid flow was similar to that obtained on the 1.0 mm hole tray (Hine, 1990). That is, flow separation occurred at the ends of the inlet downcomer which produced large circulating zones along the tray segments both on the non-perforated and perforated trays. The air when forced through the liquid, inhibited circulating flow such that it only occurred at high water inlet velocities. With the 6.35 mm hole tray, the growth and velocity of circulating flow was reduced at high superficial air velocities, and in the experiments to simulate distillation, liquid was in forward flow over most of the tray.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activated sludge basins (ASBs) are a key-step in wastewater treatment processes that are used to eliminate biodegradable pollution from the water discharged to the natural environment. Bacteria found in the activated sludge consume and assimilate nutrients such as carbon, nitrogen and phosphorous under specific environmental conditions. However, applying the appropriate agitation and aeration regimes to supply the environmental conditions to promote the growth of the bacteria is not easy. The agitation and aeration regimes that are applied to activated sludge basins have a strong influence on the efficacy of wastewater treatment processes. The major aims of agitation by submersible mixers are to improve the contact between biomass and wastewater and the prevention of biomass settling. They induce a horizontal flow in the oxidation ditch, which can be quantified by the mean horizontal velocity. Mean values of 0.3-0.35 m s-1 are recommended as a design criteria to ensure best conditions for mixing and aeration (Da Silva, 1994). To give circulation velocities of this order of magnitude, the positioning and types of mixers are chosen from the plant constructors' experience and the suppliers' data for the impellers. Some case studies of existing plants have shown that measured velocities were not in the range that was specified in the plant design. This illustrates that there is still a need for design and diagnosis approach to improve process reliability by eliminating or reducing the number of short circuits, dead zones, zones of inefficient mixing and poor aeration. The objective of the aeration is to facilitate the quick degradation of pollutants by bacterial growth. To achieve these objectives a wastewater treatment plant must be adequately aerated; thus resulting in 60-80% of all energetic consummation being dedicated to the aeration alone (Juspin and Vasel, 2000). An earlier study (Gillot et al., 1997) has illustrated the influence that hydrodynamics have on the aeration performance as measure by the oxygen transfer coefficient. Therefore, optimising the agitation and aeration systems can enhance the oxygen transfer coefficient and consequently reduce the operating costs of the wastewater treatment plant. It is critically important to correctly estimate the mass transfer coefficient as any errors could result in the simulations of biological activity not being physically representative. Therefore, the transfer process was rigorously examined in several different types of process equipment to determine the impact that different hydrodynamic regimes and liquid-side film transfer coefficients have on the gas phase and the mass transfer of oxygen. To model the biological activity occurring in ASBs, several generic biochemical reaction models have been developed to characterise different biochemical reaction processes that are known as Activated Sludge Models, ASM (Henze et al., 2000). The ASM1 protocol was selected to characterise the impact of aeration on the bacteria consuming and assimilating ammonia and nitrate in the wastewater. However, one drawback of ASM protocols is that the hydrodynamics are assumed to be uniform by the use of perfectly mixed, plug flow reactors or as a number of perfectly mixed reactors in series. This makes it very difficult to identify the influence of mixing and aeration on oxygen mass transfer and biological activity. Therefore, to account for the impact of local gas-liquid mixing regime on the biochemical activity Computational Fluid Dynamics (CFD) was used by applying the individual ASM1 reaction equations as the source terms to a number of scalar equations. Thus, the application of ASM1 to CFD (FLUENT) enabled the investigation of the oxygen transfer efficiency and the carbon & nitrogen biological removal in pilot (7.5 cubic metres) and plant scale (6000 cubic metres) ASBs. Both studies have been used to validate the effect that the hydrodynamic regime has on oxygen mass transfer (the circulation velocity and mass transfer coefficient) and the effect that this had on the biological activity on pollutants such as ammonia and nitrate (Cartland Glover et al., 2005). The work presented here is one part to of an overall approach for improving the understanding of ASBs and the impact that they have in terms of the hydraulic and biological performance on the overall wastewater treatment process. References CARTLAND GLOVER G., PRINTEMPS C., ESSEMIANI K., MEINHOLD J., (2005) Modelling of wastewater treatment plants ? How far shall we go with sophisticated modelling tools? 3rd IWA Leading-Edge Conference & Exhibition on Water and Wastewater Treatment Technologies, 6-8 June 2005, Sapporo, Japan DA SILVA G. (1994). Eléments d'optimisation du transfert d'oxygène par fines bulles et agitateur séparé en chenal d'oxydation. PhD Thesis. CEMAGREF Antony ? France. GILLOT S., DERONZIER G., HEDUIT A. (1997). Oxygen transfer under process conditions in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. WEFTEC, Chicago, USA. HENZE M., GUJER W., MINO T., van LOOSDRECHT M., (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and Technical Report No. 9. IWA Publishing, London, UK. JUSPIN H., VASEL J.-L. (2000). Influence of hydrodynamics on oxygen transfer in the activated sludge process. IWA, Paris - France.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is focused on process intensification. Several significant problems and applications of this theme are covered. Process intensification is nowadays one of the most popular trends in chemical engineering and attempts have been made to develop a general, systematic methodology for intensification. This seems, however, to be very difficult, because intensified processes are often based on creativity and novel ideas. Monolith reactors and microreactors are successful examples of process intensification. They are usually multichannel devices in which a proper feed technique is important for creating even fluid distribution into the channels. Two different feed techniques were tested for monoliths. In the first technique a shower method was implemented by means of perforated plates. The second technique was a dispersion method using static mixers. Both techniques offered stable operation and uniform fluid distribution. The dispersion method enabled a wider operational range in terms of liquid superficial velocity. Using dispersion method, a volumetric gas-liquid mass transfer coefficient of 2 s-1 was reached. Flow patterns play a significant role in terms of the mixing performance of micromixers. Although the geometry of a T-mixer is simple, channel configurations and dimensions had a clear effect on mixing efficiency. The flow in the microchannel was laminar, but the formation of vortices promoted mixing in micro T-mixers. The generation of vortices was dependent on the channel dimensions, configurations and flow rate. Microreactors offer a high ratio of surface area to volume. Surface forces and interactions between fluids and surfaces are, therefore, often dominant factors. In certain cases, the interactions can be effectively utilised. Different wetting properties of solid materials (PTFE and stainless steel) were applied in the separation of immiscible liquid phases. A micro-scale plate coalescer with hydrophilic and hydrophobic surfaces was used for the continuous separation of organic and aqueous phases. Complete phase separation occurred in less than 20 seconds, whereas the separation time by settling exceeded 30 min. Fluid flows can be also intensified in suitable conditions. By adding certain additives into turbulent fluid flow, it was possible to reduce friction (drag) by 40 %. Drag reduction decreases frictional pressure drop in pipelines which leads to remarkable energy savings and decreases the size or number of pumping facilities required, e.g., in oil transport pipes. Process intensification enables operation often under more optimal conditions. The consequent cost savings from reduced use of raw materials and reduced waste lead to greater economic benefits in processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microalgae cultures are attracting great attentions in many industrial applications. However, one of the technical challenges is to cut down the capital and operational costs of microalgae production systems, with special difficulty in reactor design and scale-up. The thesis work open with an overview on the microalgae cultures as a possible answer to solve some of the upcoming planet issues and their applications in several fields. After the work offers a general outline on the state of the art of microalgae culture systems, taking a special look to the enclosed photobioreactors (PBRs). The overall objective of this study is to advance the knowledge of PBRs design and lead to innovative large scale processes of microalgae cultivation. An airlift flat panel photobioreactor was designed, modeled and experimentally characterized. The gas holdup, liquid flow velocity and oxygen mass transfer of the reactor were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivation of microalgae. The model predicted data correlated well with experimental data, and the high concentration of suspension cell culture could be achieved with controlled conditions. The reactor was inoculated with the algal strain Scenedesmus obliquus sp. first and with Chlorella sp. later and sparged with air. The reactor was operated in batch mode and daily monitored for pH, temperature, and biomass concentration and activity. The productivity of the novel device was determined, suggesting the proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts. Those research results favored the possibility of scaling the reactor up into industrial scales based on the models employed, and the potential advantages and disadvantages were discussed for this novel industrial design.