987 resultados para Lipid-film Hydration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ann of this study was to investigate the incorporation of a model antigen, fluorescently labelled ovalbumin (FITC-OVA), into various colloidal particles including immune stimulating complexes (ISCOMs), liposomes, ring and worm-like micelles, lamellae and lipidic/layered structures that are formed from various combinations of the triterpene saponin Quil A, cholesterol and phosphatidylethanolamine (PE) following hydration of PE/cholesterol lipid films with aqueous Solutions of Quil A. Colloidal dispersions of these three components were also prepared by the dialysis method for comparison. FITC-OVA was conjugated with palmitic acid (P) and PE to produce P-FITC-OVA and PE-FITC-OVA, respectively. Both P-FITC-OVA and PE-FITC-OVA could be incorporated in all colloidal structures whereas FITC-OVA was incorporated only into liposomes. The incorporation of PE-FITC-OVA into all colloidal structures was significantly higher than P-FITC-OVA (P < 0.05). The degree of incorporation of protein was in the order: ring and worm-like micelles < liposomes and lipidic/layered structures < ISCOMs and lamellae. The incorporation of protein into the various particles prepared by the lipid film hydration method was similar to those for colloidal particles prepared by the dialysis method (provided both methods lead to the formation of the same colloidal structures). In the case of different colloidal structures arising due to the preparation method, differences in encapsulation efficiency were found (P < 0.05) for formulations with the same polar lipid composition. This study demonstrates that the various colloidal particles formed as a result of hydrating PE/cholesterol lipid films with different amounts of Quil A are capable of incorporating antigen, provided it is amphipathic. Some of these colloidal particles may be used as effective vaccine delivery systems. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudo-ternary phase diagrams of the polar lipids Quil A, cholesterol (Chol) and phosphatidylcholine (PC) in aqueous mixtures prepared by the lipid film hydration method (where dried lipid film of phospholipids and cholesterol are hydrated by an aqueous solution of Quil A) were investigated in terms of the types of particulate structures formed therein. Negative staining transmission electron microscopy and polarized light microscopy were used to characterize the colloidal and coarse dispersed particles present in the systems. Pseudo-ternary phase diagrams were established for lipid mixtures hydrated in water and in Tris buffer (pH 7.4). The effect of equilibration time was also studied with respect to systems hydrated in water where the samples were stored for 2 months at 4degreesC. Depending on the mass ratio of Quil A, Chol and PC in the systems, various colloidal particles including ISCOM matrices, liposomes, ring-like micelles and worm-like micelles were observed. Other colloidal particles were also observed as minor structures in the presence of these predominant colloids including helices, layered structures and lamellae (hexagonal pattern of ring-like micelles). In terms of the conditions which appeared to promote the formation of ISCOM matrices, the area of the phase diagrams associated with systems containing these structures increased in the order: hydrated in water/short equilibration period < hydrated in buffer/short equilibration period < hydrated in water/prolonged equilibration period. ISCOM matrices appeared to form over time from samples, which initially contained a high concentration of ring-like micelles suggesting that these colloidal structures may be precursors to ISCOM matrix formation. Helices were also frequently found in samples containing ISCOM matrices as a minor colloidal structure. Equilibration time and presence of buffer salts also promoted the formation of liposomes in systems not containing Quil A. These parameters however, did not appear to significantly affect the occurrence and predominance of other structures present in the pseudo-binary systems containing Quil A. Pseudo-ternary phase diagrams of PC, Chol and Quil A are important to identify combinations which will produce different colloidal structures, particularly ISCOM matrices, by the method of lipid film hydration. Colloidal structures comprising these three components are readily prepared by hydration of dried lipid films and may have application in vaccine delivery where the functionality of ISCOMs has clearly been demonstrated. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudo-ternary diagrams for Quil A, phospholipid (phosphatidylcholine (PC) or phosphatidylethanolamine (PE)) and cholesterol were established in order to identify combinations that result in the formation of immune-stimulating complex (ISCOM) matrices and other colloidal structures produced by these three components in aqueous systems following lipid-film hydration or dialysis (methods that can be used to produce ISCOMs). In addition, the effect of equilibration time (1 month at 4degreesC) on the structures formed by the various combinations of the three components was investigated. Depending on the ratio of Quil A, cholesterol and phospholipid, different colloidal particles, including ISCOM matrices, liposomes and ring-like micelles, were found irrespective of the preparation method used. In contrast, worm-like micelles were only observed in systems prepared by lipid-film hydration. For samples prepared by dialysis, ISCOM matrices were predominantly found near the Quil A apex of the pseudo-ternary diagram (> 50% Quil A). On the other hand, for samples prepared by lipid-film hydration, ISCOM matrices were predominantly found near the phospholipid apex of the pseudo-ternary diagram (> 50% phospholipid). The regions in the pseudo-ternary diagrams in which ISCOM matrices were observed increased following an extended equilibration time, particularly for samples prepared by lipid-film hydration. Differences were also observed between pseudoternary diagrams prepared using either PE or PC as phospholipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile phospholipid/room-temperature ionic liquid (RTIL) composite material based on dimyristoylphosphatidylcholine (DMPC) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) was exploited as a new matrix for immobilizing protein. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were adopted to characterize this composite film. Hemoglobin (Hb) was chosen as a model protein to investigate the composite system. UV-vis absorbance spectra showed that Hb still maintained its heme crevice integrity in this composite film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ferrocene-lipid film electrode was successfully prepared by means of casting the solution of ferrocene and lipid in chloroform onto a glassy carbon (GC) electrode surface. Ferrocene saved in the biological membrane gave a couple of quasi-reversible peaks of cyclic voltammogram. The electrode displays a preferential electrocatalytic oxidation of dopamine (DA). The effect of electroccatalytic oxidation of DA depends on the solution pH and the negative charge lipid is in favor of catalytic oxidation of DA. The characteristic was employed for separating the electrochemical responses of DA and ascorbic acid (AA). The electrode was assessed for the voltammetric differentiation of DA and AA. The measurement of DA can be achieved with differential pulse voltammetry in the, presence of high concentration of AA. The catalytic peak current was proportional to the concentration of DA in the range of 1 x 10(-4)-3 x 10(-3) mol/L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel glucose biosensor based on cast lipid film was developed. This model of biological membrane was used to supply a biological environment on the surface of the electrode, moreover it could greatly reduce the interference and effectively exclude hydrophilic electroactive material from reaching the detecting surface. TTF was selected as a mediator because of its high electron-transfer efficiency, and it was incorporated in the lipid film firmly. Glucose oxidase was immobilized in hydrogel covered on the lipid film. The effects of pH, operating potential were explored for the optimum analytical performance by using amperometric method. The response time of the biosensor was less than 20 s, and the linear range is up to 10 mmol l(-1) (corr. coeff. 0.9932) with the detection limit of 2 x 10(-5) mol l(-1). The biosensor also exihibited good stability and reproducibility. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ferrocene-dimyristoyl phosphatidylcholine (DMPC) film electrode was prepared by casting the solution of ferrocene and DMPC in chloroform onto a glassy carbon electrode surface. Ferrocene retained in the biological membrane gave a couple of irreversible peaks of cyclic voltammogram. The electrode exhibited good electrocatalytic activity for the oxidation of ascorbic acid (H(2)A) in phosphate buffer (pH 6.64) with an anodic peak potential of +340 mV (vs. Ag/AgCl). The anodic current was directly proportional to the square root of the scan rate below 150 mV s(-1). The influence of the pH value was investigated and it was observed that pH 6.64 was the suitable value to the anodic peak potential and current. The thickness of the film and the interference of uric acid were also studied. The electrode can be used to determine H(2)A in the presence of equimolar uric acid. The catalytic peak current increased linearly with the concentration of H(2)A in the range of 1 X 10(-4)-5 X 10(-3) mol L-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable lipid film was made by casting lipid in chloroform onto a glassy carbon electrode. This model of a biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by dopamine. After this electrode had been immersed in dopamine solution for 10 h, it was found that some dopamine had been incorporated in the film. The cyclic voltammogram was obtained for the oxidation of 2.0 X 10(-3) mol 1(-1) NADH with dopamine incorporated in the films. All electrochemical experiments were performed in 0.005 mol 1(-1) phosphate buffer (pH 7.0) containing 0.1 mol 1(-1) NaCl without oxygen. The oxidation current increased gradually with successive sweeps and reached steady state. It was a different phenomenon from previous results. The anodic overpotential was reduced by about 130 mV compared with that obtained at a bare glassy carbon electrode. The diffusion coefficient for 2.0 X 10(-3) mol 1(-1) NADH was 6.7 X 10(-6) cm(2) s(-1). (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantification of the lipid content in liposomal adjuvants for subunit vaccine formulation is of extreme importance, since this concentration impacts both efficacy and stability. In this paper, we outline a high performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) method that allows for the rapid and simultaneous quantification of lipid concentrations within liposomal systems prepared by three liposomal manufacturing techniques (lipid film hydration, high shear mixing, and microfluidics). The ELSD system was used to quantify four lipids: 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, dimethyldioctadecylammonium (DDA) bromide, and D-(+)-trehalose 6,6′-dibehenate (TDB). The developed method offers rapidity, high sensitivity, direct linearity, and a good consistency on the responses (R2 > 0.993 for the four lipids tested). The corresponding limit of detection (LOD) and limit of quantification (LOQ) were 0.11 and 0.36 mg/mL (DMPC), 0.02 and 0.80 mg/mL (cholesterol), 0.06 and 0.20 mg/mL (DDA), and 0.05 and 0.16 mg/mL (TDB), respectively. HPLC-ELSD was shown to be a rapid and effective method for the quantification of lipids within liposome formulations without the need for lipid extraction processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

preparation of liposomes, as a new, continuous and potentially scaleable method for the preparation of ISCOMs. Phosphatidylcholine (PC) and cholesterol (Chol) were dissolved in ether, which was injected into an aqueous solution, maintained at 55 degrees C, containing Quil A. The influences of the following variables on ISCOM formation were investigated: ratio of PC:Quil A:Chol used, pumping rate, total lipid mass and concentration of buffer salts and Quil A in the aqueous phase. All samples were characterized by negative stain transmission electron microscopy, photon correlation spectroscopy and sucrose ultracentrifugation gradient. It was demonstrated that ISCOMs could be produced by this method but the homogeneity of the preparation was influenced by the conditions used. Homogeneous ISCOM preparations were consistently produced only when the weight ratio of PC:Quil A:Chol was 5:3:2 with a total lipid mass of 20 mg, the Quil A dissolved in a 0.01 M phosphate buffer at a concentration of 6 mg in 4 ml, and the ether solution injected into the warmed buffer solution at a rate of 0.2 ml/min. Changing any of these variables resulted in more heterogeneous preparations in which ISCOMs typically co-existed with other colloidal structures such as worm-like and helical micelles, liposomes, lamellae and lipidic particles. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective The aim of this study was to investigate Pluronic F127-modified liposome-containing cyclodextrin (CD) inclusion complex (FLIC) for improving the solubility, cellular uptake and intestinal penetration of tacrolimus (FK 506) in the gastrointestinal (GI) tract. Methods Molecular modelling was performed to screen the optimal CD for the solubilization of FK 506. FLIC was prepared by thin-lipid film hydration with the inclusion complex solutions followed by membrane extrusion. Dilution tests were conducted in simulated gastric fluids and phosphate-buffered solution of sodium taurocholate to investigate the solubility improvement of FK506. The cellular uptake of nanocarriers was studied in Caco-2 cells, and intestinal mucous membrane penetration in the GI tract was evaluated in Sprague-Dawley rats. Key findings The results showed that β-CD had the strongest binding energy with the guest molecule among the CDs. The prepared FLIC has an average diameter of 180.8 ± 8.1 nm with a spherical shape. The solubility and cellular uptake of FK 506 was greatly improved by the incorporation of CD complexes in the Pluronic F127-modified liposomes. Intestinal mucous membrane penetration was also significantly improved by the preparation of FLIC. Conclusion With improved drug solubility and intestinal mucous membrane penetration, FLIC shows a promising oral delivery system for FK 506. © 2013 Royal Pharmaceutical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To develop liposome formulations containing monoclonal antibody anti-HER2 (MabHer2), and Paclitaxel (PTX). Methods: Seven different liposomal systems containing PTX, or MabHer2 or a combination of PTX and MabHer2 were made using lipid film hydration technique and sonication. The effects of liposome preparation conditions and extraction methods on antibody structure were investigated by polyacrylamide gel electrophoresis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The characteristics of the liposomes were determined by a zetasizer, while drug-loading efficiency was evaluated by high-performance liquid chromatography. The cytotoxic effect of the liposome formulations was evaluated on MDA-MB-453 (HER2+) and MCF-7 (HER2-) breast cancer cell lines by MTT assay. Results: The antibody was not significantly affected by the stress conditions and the method of extraction. The particle size of liposomes was < 200 nm while the amount of incorporated PTX was 97.6 % for liposome without cationic agent and 98.2 % for those with cationic agent. Recovery of MabHer2 was 94.38 % after extraction. Combined PTX/MabHer2 liposome was more toxic on HER2 overexpressing positive MDA-MB-453 cell line than PTX-loaded liposomes and MabHer2. MabHer2 and combined PTX/MabHer2 liposomes showed no toxic effects on HER2 overexpressing negative MCF-7 cells relative to cationic PTX-loaded liposomes. Conclusions: This results obtained show that PTX can be encapsulated successfully into liposoma systems and that owing to Her2 specific antibody, these systems can be delivered directly to the target cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to prepare solid Quil A-cholesterol-phospholid formulations (as powder mixtures or compressed to pellets) by physical mixing or by freeze-drying of aqueous dispersions of these components in ratios that allow spontaneous formation of ISCOMs and other colloidal stuctures upon hydration. The effect of addition of excess cholesterol to the lipid mixtures on the release of a model antigen (PE-FITC-OVA) from the pellets was also investigated. Physical properties were evaluated by X-ray powder diffractometry (XPRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and polarized light microscopy (PLM). Characterization of aqueous colloidal dispersions was performed by negative staining transmission electron microscopy (TEM). Physically mixed powders (with or without PE-FITC-OVA) and pellets prepared from the same powders did not spontaneously form ISCOM matrices and related colloidal structures such as worm-like micelles, ring-like micelles, lipidic/layered structures and lamellae (hexagonal array of ring-like micelles) upon hydration as expected from the pseudo-temary diagram for aqueous mixtures of Quil A, cholesterol and phospholipid. In contrast, spontaneous formation of the expected colloids was demonstrated for the freeze-dried lipid mixtures. Pellets prepared by compression of freeze-dried powders released PE-FITC-OVA slower than those prepared from physically mixed powders. TEM investigations revealed that the antigen was released in the form of colloidal particles (ISCOMs) from pellets prepared by compression of freeze-dried powders. The addition of excess cholesterol slowed down the release of antigen. The findings obtained in this study are important for the formulation of solid Quil A-containing lipid articles as controlled particulate adjuvant containing antigen delivery systems. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to systematically investigate the effect of lipid chain length and number of lipid chains present on lipopeptides on their ability to be incorporated within liposomes. The peptide KAVYNFATM was synthesized and conjugated to lipoamino acids having acyl chain lengths of C-8, C-12 and C-16. The C-12 construct was also prepared in the monomeric, dimeric and trimeric form. Liposomes were prepared by two techniques: hydration of dried lipid films (Bangham method) and hydration of freeze-dried monophase systems. Encapsulation of lipopeptide within liposomes prepared by hydration of dried lipid films was incomplete in all cases ranging from an entrapment efficiency of 70% for monomeric lipoamino acids at a 5% (w/w) loading to less than 20% for di- and trimeric forms at loadings of 20% (w/w). The incomplete entrapment of lipopeptides within liposomes appeared to be a result of the different solubilities of the lipopeptide and the phospholipids in the solvent used for the preparation of the lipid film. In contrast, encapsulation of lipopeptide within liposomes prepared by hydration of freeze-dried monophase systems was high, even up to a loading of 20% (w/w) and was much less affected by the acyl chain length and number than when liposomes were prepared by hydration of dried lipid films. Freeze drying of monophase systems is better at maintaining a molecular dispersion of the lipopeptide within the solid phospholipid matrix compared to preparation of lipid film by evaporation, particularly if the solubility of the lipopeptide in solvents is markedly different from that of the polar lipids used for liposome preparation. Consequently, upon hydration, the lipopeptide is more efficiently intercalated within the phospholipid bilayers. (C) 2005 Elsevier B.V. All rights reserved.