3 resultados para Lineosoma
Resumo:
Both sexes of a new genus and species of Ectinosomatidae (Copepoda, Harpacticoida) from sublittoral sediments collected on the inner continental shelf in Ubatuba, Sao Paulo State (Brazil) are described in detail. Chaulionyx gen. n. (type species: C. paivacarvalhoi sp. n.) differs from all known genera in the presence of a conspicuous bifid spine on the prehensile P1 endopod. It can be differentiated from other genera with a prehensile endopod (Halophytophilus Brian, 1919; Bradyellopsis Brian, 1925; Klieosoma Hicks & Schriever, 1985) by the presence of distinctive subrectangular middorsal pores on the urosomites and the unarmed male sixth legs. The genus Lineosoma Wells, 1965 is recognized as a paraphyletic taxon and relegated to a junior subjective synonym of Noodtiella Wells, 1965. Arenosetella pectinata Chappuis, 1954a is removed from its floating position in Ectinosomoides Nicholls, 1945, transferred to the genus Noodtiella as N. pectinata comb. n. and considered the senior subjective synonym of N. toukae Mitwally & Montagna, 2001. Dichotomous keys are provided for the identification of the 18 valid species of Noodtiella and the 21 valid genera of the family Ectinosomatidae. Halophytophilus aberrans Wells & Rao, 1987 is placed species incertae sedis in the family.
Resumo:
The influence of microhabitat type on the diversity and community structure of the harpacticoid copepod fauna associated with a cold-water coral degradation zone was investigated in the Porcupine Seabight (North-East Atlantic). Three substrate types were distinguished: dead fragments of the cold-water coral Lophelia pertusa, skeletons of the glass sponge Aphrocallistes bocagei and the underlying sediment. At the family level, it appears that coral fragments and underlying sediment do not harbour distinctly diVerent assemblages, with Ectinosomatidae, Ameiridae, Pseudotachidiidae, Argestidae and Miraciidae as most abundant. Conclusions on assemblage structure and diversity of the sponge skeletons are limited as only two samples were available. Similarity analysis at species level showed a strong variation in the sediment samples, which did not harbour a distinctly different assemblage in opposition to the coral and sponge samples. Several factors (sediment infill on the hard substrates, mobility of the copepods, limited sample sizes) are proposed to explain this apparent lack of a distinct difference between the microhabitats. Coral fragments and sediment were both characterised by high species diversity and low species dominance, which might indicate that copepod diversity is not substantially influenced by hydrodynamic stress. The additive partitioning of species diversity showed that by adding locations species richness was greatly enhanced. The harpacticoid community in the cold-water coral degradation zone is highly diverse and includes 157 species, 62 genera and 19 families. Information from neighbouring soft-bottom regions is necessary to assess whether total species diversity is increased by the presence of these complex habitatproviding substrates.