929 resultados para Lineare Regression
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2015
Resumo:
Niedrige Milchpreise setzen die deutschen Milchbauern unter Kostendruck und veranlassen sie, die Laktationsleistung der Kühe zu erhöhen. Im Zusammenhang mit weiteren Milchleistungssteigerungen kommt einer wiederkäuergerechten Fütterung im Hinblick auf die Vermeidung gesundheitlicher Risiken eine besondere Bedeutung zu. Ziel des Forschungsvorhabens war es, eine Messmethode zur Bestimmung von Fress- und Wiederkäuaktivitäten zu entwickeln, welche die bisherigen methodischen Unzulänglichkeiten überwindet und ermöglicht den qualitativen und quantitativen Einfluss tierindividueller, fütterungsbedingter und leistungsbezogener Faktoren zu erfassen. Hierzu wurde der Prototyp eines Messsystem entwickelt, das in einem Messhalfter integriert wurde. Das Messsystem beinhaltet einen Sensor zur Erfassung der Kaubewegungen, einen Datenlogger für die Speicherung der Messdaten, ein Akkupack zur Energieversorgung, und eine Auswertungssoftware für die automatische Analyse der erfassten Messdaten. Zwecks Überprüfung des Prototypen unter Praxisbedingungen wurden im Rahmen eines Fütterungsversuches Messungen der Fress- und Wiederkäuaktivität durchgeführt. Die Anwendung des Prototypen auf dem Versuchsbetrieb deckte die folgenden methodischen Unzulänglichkeiten auf: - elektromagnetische Störfelder, hervorgerufen durch die auf den Versuchsbetrieb verwendeten Wiegetröge zur Erfassung der Futteraufnahme, - Fehlmessungen aufgrund verrutschender Halfter, bedingt durch die große Variation in den Schädelmaßen der Versuchstiere, - keine hinreichende Differenzierung der einzelnen Verhaltenstypen bei schnell aufeinanderfolgenden unterschiedlichen Verhaltensmustern. Die aufgetretenen elektrischen Probleme konnten mittels einer verbesserten Abschirmung gegen elektromagnetische Felder behoben werden. Fehlmessungen aufgrund sich verschiebender Halfter konnten durch eine Änderung des Halfterdesigns verringert werden. Es war jedoch nicht möglich, diese Störgröße gänzlich zu beseitigen. Ebenso war es nicht möglich, die Differenzierung der einzelnen Verhaltenstypen bei schnell aufeinanderfolgenden unterschiedlichen Verhaltensmustern mittels einer Änderung im Auswertealgorithmus zu verbessern. Um diesen beiden Problemen Rechnung zu tragen, wurden die Ergebnisse der Auswertungssoftware mittels einer Sichtkontrolle der Messwertkurven validiert. Nach der Validierung verblieben für die statistische Auswertung folgende Messergebnisse: - Anzahl auswertbarer Einzeltiere: 9 - Anzahl auswertbarer Messtage: 73 - Anzahl auswertbarer Wiederkäuphasen: 512 - Anzahl auswertbarer Fressphasen: 676 - Anzahl auswertbarer Einzelboli: 11.347 In der statistischen Auswertung wurden Korrelation der Charakteristika der Wiederkäuboli: Länge des Bolus in Sekunden, Anzahl der Kauschläge pro Bolus und der Frequenz der Kauschläge pro Sekunde und Bolus, der Wiederkäuphasen: Länge der Wiederkäuphasen in Minuten, Anzahl Boli in der Wiederkäuphase und die Anzahl der Kauschläge in der Wiederkäuphase und der Wiederkäudauer pro Tag (in Minuten) mit den erfassten Einflussfaktoren: tierindividuelle Parameter, Milchparameter und Fütterungsparameter berechnet. Um wechselseitige Beziehungen der Einflussfaktoren untereinander besser darstellen zu können, wurde im nächsten Schritt eine multiple lineare Regression durchgeführt. Zur Erfassung der Gewichtung der Einflussfaktoren wurde als dritte statistische Methode eine Regressionsbaumanalyse berechnet. Die Charakteristika der Wiederkäuboli wiesen eine große tierindividuelle Variation zwischen den Einzeltieren auf. Die Milchkühe käuten im Mittel 46 ± 12 Sekunden wieder und vollzogen in dieser Zeit 60 ± 25 Kauschläge bei einer mittleren Kauschlagfrequenz von 1,3 ± 0,4 Kauschlägen pro Sekunde. Die größte tierindividuelle Variation mit 53,1 % wies der Parameter Anzahl der Kauschläge pro Bolus auf. Die Frequenz der Kauschläge pro Bolus wurde in hohem Maße von der Anzahl der Kauschläge pro Bolus beeinflusst (R² = 0,71) und nur in geringem Maße von der Länge des Bolus (R² = 0,21). Das geringe Bestimmtheitsmaß der multiplen Regression der Länge des Bolus (R² = 0,18) deutet auf eine sehr geringe Beeinflussung durch alle erfassten Einflussfaktoren hin. Ebenso wie die Charakteristika der Wiederkäuboli wiesen die Charakteristika der Wiederkäuphasen eine hohe inter- und intraindividuelle Variation (>45%) und bei allen Versuchstieren eine hohe Korrelation der Charakteristika untereinander auf (r = 0,74 bis r =0,98). In der Regressionsanalyse konnte keiner der geprüften Einflussfaktoren einen nennenswerten Erklärungswert liefern. Die Variationen in der Länge der Wiederkäuphasen, Anzahl der Boli pro Phase und der Anzahl der Kauschläge pro Phase wurden weder von der Fütterung, noch vom Tier oder der Milchleistung in nennenswerter Weise geprägt. Eine Beurteilung dieser Einflussfaktoren anhand der Beobachtung einzelner Wiederkäuphasen ist somit nicht möglich. Die Fress- und Wiederkäudauer pro Tag wiesen eine große tierindividuelle Variation auf (37,9 % bzw. 29,0 %). Bei beiden Verhaltensweisen ist die intraindividuelle Variation geringer als die interindividuelle Variation (Fressdauer: 37,9 zu 23,6 %; Wiederkäudauer: 29,0 zu 9%). Der geringe Wert des intraindividuellen Variationskoeffizienten der Wiederkäudauer pro Tag legt eine starke tierindividuelle Determinierung der Wiederkäuaktivität nahe.
Resumo:
Landnutzungsänderungen sind eine wesentliche Ursache von Treibhausgasemissionen. Die Umwandlung von Ökosystemen mit permanenter natürlicher Vegetation hin zu Ackerbau mit zeitweise vegetationslosem Boden (z.B. nach der Bodenbearbeitung vor der Aussaat) führt häufig zu gesteigerten Treibhausgasemissionen und verminderter Kohlenstoffbindung. Weltweit dehnt sich Ackerbau sowohl in kleinbäuerlichen als auch in agro-industriellen Systemen aus, häufig in benachbarte semiaride bis subhumide Rangeland Ökosysteme. Die vorliegende Arbeit untersucht Trends der Landnutzungsänderung im Borana Rangeland Südäthiopiens. Bevölkerungswachstum, Landprivatisierung und damit einhergehende Einzäunung, veränderte Landnutzungspolitik und zunehmende Klimavariabilität führen zu raschen Veränderungen der traditionell auf Tierhaltung basierten, pastoralen Systeme. Mittels einer Literaturanalyse von Fallstudien in ostafrikanischen Rangelands wurde im Rahmen dieser Studie ein schematisches Modell der Zusammenhänge von Landnutzung, Treibhausgasemissionen und Kohlenstofffixierung entwickelt. Anhand von Satellitendaten und Daten aus Haushaltsbefragungen wurden Art und Umfang von Landnutzungsänderungen und Vegetationsveränderungen an fünf Untersuchungsstandorten (Darito/Yabelo Distrikt, Soda, Samaro, Haralo, Did Mega/alle Dire Distrikt) zwischen 1985 und 2011 analysiert. In Darito dehnte sich die Ackerbaufläche um 12% aus, überwiegend auf Kosten von Buschland. An den übrigen Standorten blieb die Ackerbaufläche relativ konstant, jedoch nahm Graslandvegetation um zwischen 16 und 28% zu, während Buschland um zwischen 23 und 31% abnahm. Lediglich am Standort Haralo nahm auch „bare land“, vegetationslose Flächen, um 13% zu. Faktoren, die zur Ausdehnung des Ackerbaus führen, wurden am Standort Darito detaillierter untersucht. GPS Daten und anbaugeschichtlichen Daten von 108 Feldern auf 54 Betrieben wurden in einem Geographischen Informationssystem (GIS) mit thematischen Boden-, Niederschlags-, und Hangneigungskarten sowie einem Digitales Höhenmodell überlagert. Multiple lineare Regression ermittelte Hangneigung und geographische Höhe als signifikante Erklärungsvariablen für die Ausdehnung von Ackerbau in niedrigere Lagen. Bodenart, Entfernung zum saisonalen Flusslauf und Niederschlag waren hingegen nicht signifikant. Das niedrige Bestimmtheitsmaß (R²=0,154) weist darauf hin, dass es weitere, hier nicht erfasste Erklärungsvariablen für die Richtung der räumlichen Ausweitung von Ackerland gibt. Streudiagramme zu Ackergröße und Anbaujahren in Relation zu geographischer Höhe zeigen seit dem Jahr 2000 eine Ausdehnung des Ackerbaus in Lagen unter 1620 müNN und eine Zunahme der Schlaggröße (>3ha). Die Analyse der phänologischen Entwicklung von Feldfrüchten im Jahresverlauf in Kombination mit Niederschlagsdaten und normalized difference vegetation index (NDVI) Zeitreihendaten dienten dazu, Zeitpunkte besonders hoher (Begrünung vor der Ernte) oder niedriger (nach der Bodenbearbeitung) Pflanzenbiomasse auf Ackerland zu identifizieren, um Ackerland und seine Ausdehnung von anderen Vegetationsformen fernerkundlich unterscheiden zu können. Anhand der NDVI Spektralprofile konnte Ackerland gut Wald, jedoch weniger gut von Gras- und Buschland unterschieden werden. Die geringe Auflösung (250m) der Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI Daten führte zu einem Mixed Pixel Effect, d.h. die Fläche eines Pixels beinhaltete häufig verschiedene Vegetationsformen in unterschiedlichen Anteilen, was deren Unterscheidung beeinträchtigte. Für die Entwicklung eines Echtzeit Monitoring Systems für die Ausdehnung des Ackerbaus wären höher auflösende NDVI Daten (z.B. Multispektralband, Hyperion EO-1 Sensor) notwendig, um kleinräumig eine bessere Differenzierung von Ackerland und natürlicher Rangeland-Vegetation zu erhalten. Die Entwicklung und der Einsatz solcher Methoden als Entscheidungshilfen für Land- und Ressourcennutzungsplanung könnte dazu beitragen, Produktions- und Entwicklungsziele der Borana Landnutzer mit nationalen Anstrengungen zur Eindämmung des Klimawandels durch Steigerung der Kohlenstofffixierung in Rangelands in Einklang zu bringen.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.
Resumo:
The troglobitic armored catfish, Ancistrus cryptophthalmus (Loricariidae, Ancistrinae) is known from four caves in the São Domingos karst area, upper rio Tocantins basin, Central Brazil. These populations differ in general body shape and degree of reduction of eyes and of pigmentation. The small Passa Três population (around 1,000 individuals) presents the most reduced eyes, which are not externally visible in adults. A small group of Passa Três catfish, one male and three females, reproduced spontaneously thrice in laboratory, at the end of summertime in 2000, 2003 and 2004. Herein we describe the reproductive behavior during the 2003 event, as well as the early development of the 2003 and 2004 offsprings, with focus on body growth and ontogenetic regression of eyes. The parental care by the male, which includes defense of the rock shelter where the egg clutch is laid, cleaning and oxygenation of eggs, is typical of many loricariids. On the other hand, the slow development, including delayed eye degeneration, low body growth rates and high estimated longevity (15 years or more) are characteristic of precocial, or K-selected, life cycles. In the absence of comparable data for close epigean relatives (Ancistrus spp.), it is not possible to establish whether these features are an autapomorphic specialization of the troglobitic A. cryptophthalmus or a plesiomorphic trait already present in the epigean ancestor, possibly favoring the adoption of the life in the food-poor cave environment. We briefly discuss the current hypotheses on eye regression in troglobitic vertebrates.
Resumo:
Mature weight breeding values were estimated using a multi-trait animal model (MM) and a random regression animal model (RRM). Data consisted of 82 064 weight records from 8 145 animals, recorded from birth to eight years of age. Weights at standard ages were considered in the MM. All models included contemporary groups as fixed effects, and age of dam (linear and quadratic effects) and animal age as covariates. In the RRM, mean trends were modelled through a cubic regression on orthogonal polynomials of animal age and genetic maternal and direct and maternal permanent environmental effects were also included as random. Legendre polynomials of orders 4, 3, 6 and 3 were used for animal and maternal genetic and permanent environmental effects, respectively, considering five classes of residual variances. Mature weight (five years) direct heritability estimates were 0.35 (MM) and 0.38 (RRM). Rank correlation between sires' breeding values estimated by MM and RRM was 0.82. However, selecting the top 2% (12) or 10% (62) of the young sires based on the MM predicted breeding values, respectively 71% and 80% of the same sires would be selected if RRM estimates were used instead. The RRM modelled the changes in the (co) variances with age adequately and larger breeding value accuracies can be expected using this model.
Resumo:
In this paper, we compare three residuals to assess departures from the error assumptions as well as to detect outlying observations in log-Burr XII regression models with censored observations. These residuals can also be used for the log-logistic regression model, which is a special case of the log-Burr XII regression model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to the modified martingale-type residual in log-Burr XII regression models with censored data.
Resumo:
A bathtub-shaped failure rate function is very useful in survival analysis and reliability studies. The well-known lifetime distributions do not have this property. For the first time, we propose a location-scale regression model based on the logarithm of an extended Weibull distribution which has the ability to deal with bathtub-shaped failure rate functions. We use the method of maximum likelihood to estimate the model parameters and some inferential procedures are presented. We reanalyze a real data set under the new model and the log-modified Weibull regression model. We perform a model check based on martingale-type residuals and generated envelopes and the statistics AIC and BIC to select appropriate models. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.
Resumo:
A total of 152,145 weekly test-day milk yield records from 7317 first lactations of Holstein cows distributed in 93 herds in southeastern Brazil were analyzed. Test-day milk yields were classified into 44 weekly classes of DIM. The contemporary groups were defined as herd-year-week of test-day. The model included direct additive genetic, permanent environmental and residual effects as random and fixed effects of contemporary group and age of cow at calving as covariable, linear and quadratic effects. Mean trends were modeled by a cubic regression on orthogonal polynomials of DIM. Additive genetic and permanent environmental random effects were estimated by random regression on orthogonal Legendre polynomials. Residual variances were modeled using third to seventh-order variance functions or a step function with 1, 6,13,17 and 44 variance classes. Results from Akaike`s and Schwarz`s Bayesian information criterion suggested that a model considering a 7th-order Legendre polynomial for additive effect, a 12th-order polynomial for permanent environment effect and a step function with 6 classes for residual variances, fitted best. However, a parsimonious model, with a 6th-order Legendre polynomial for additive effects and a 7th-order polynomial for permanent environmental effects, yielded very similar genetic parameter estimates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We introduce the log-beta Weibull regression model based on the beta Weibull distribution (Famoye et al., 2005; Lee et al., 2007). We derive expansions for the moment generating function which do not depend on complicated functions. The new regression model represents a parametric family of models that includes as sub-models several widely known regression models that can be applied to censored survival data. We employ a frequentist analysis, a jackknife estimator, and a parametric bootstrap for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes, and censoring percentages, several simulations are performed. In addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We define martingale and deviance residuals to evaluate the model assumptions. The extended regression model is very useful for the analysis of real data and could give more realistic fits than other special regression models.