991 resultados para Linear combining
Resumo:
In this paper, we investigate an amplify-and-forward (AF) multiple-input multiple-output - spatial division multiplexing (MIMO-SDM) cooperative wireless networks, where each network node is equipped with multiple antennas. In order to deal with the problems of signal combining at the destination and cooperative relay selection, we propose an improved minimum mean square error (MMSE) signal combining scheme for signal recovery at the destination. Additionally, we propose two distributed relay selection algorithms based on the minimum mean squared error (MSE) of the signal estimation for the cases where channel state information (CSI) from the source to the destination is available and unavailable at the candidate nodes. Simulation results demonstrate that the proposed combiner together with the proposed relay selection algorithms achieve higher diversity gain than previous approaches in both flat and frequency-selective fading channels.
Resumo:
The use of expert knowledge to quantify a Bayesian Network (BN) is necessary when data is not available. This however raises questions regarding how opinions from multiple experts can be used in a BN. Linear pooling is a popular method for combining probability assessments from multiple experts. In particular, Prior Linear Pooling (PrLP), which pools opinions then places them into the BN is a common method. This paper firstly proposes an alternative pooling method, Posterior Linear Pooling (PoLP). This method constructs a BN for each expert, then pools the resulting probabilities at the nodes of interest. Secondly, it investigates the advantages and disadvantages of using these pooling methods to combine the opinions of multiple experts. Finally, the methods are applied to an existing BN, the Wayfinding Bayesian Network Model, to investigate the behaviour of different groups of people and how these different methods may be able to capture such differences. The paper focusses on 6 nodes Human Factors, Environmental Factors, Wayfinding, Communication, Visual Elements of Communication and Navigation Pathway, and three subgroups Gender (female, male),Travel Experience (experienced, inexperienced), and Travel Purpose (business, personal) and finds that different behaviors can indeed be captured by the different methods.
Resumo:
The benefits of applying tree-based methods to the purpose of modelling financial assets as opposed to linear factor analysis are increasingly being understood by market practitioners. Tree-based models such as CART (classification and regression trees) are particularly well suited to analysing stock market data which is noisy and often contains non-linear relationships and high-order interactions. CART was originally developed in the 1980s by medical researchers disheartened by the stringent assumptions applied by traditional regression analysis (Brieman et al. [1984]). In the intervening years, CART has been successfully applied to many areas of finance such as the classification of financial distress of firms (see Frydman, Altman and Kao [1985]), asset allocation (see Sorensen, Mezrich and Miller [1996]), equity style timing (see Kao and Shumaker [1999]) and stock selection (see Sorensen, Miller and Ooi [2000])...
Resumo:
Information that is elicited from experts can be treated as `data', so can be analysed using a Bayesian statistical model, to formulate a prior model. Typically methods for encoding a single expert's knowledge have been parametric, constrained by the extent of an expert's knowledge and energy regarding a target parameter. Interestingly these methods have often been deterministic, in that all elicited information is treated at `face value', without error. Here we sought a parametric and statistical approach for encoding assessments from multiple experts. Our recent work proposed and demonstrated the use of a flexible hierarchical model for this purpose. In contrast to previous mathematical approaches like linear or geometric pooling, our new approach accounts for several sources of variation: elicitation error, encoding error and expert diversity. Of interest are the practical, mathematical and philosophical interpretations of this form of hierarchical pooling (which is both statistical and parametric), and how it fits within the subjective Bayesian paradigm. Case studies from a bioassay and project management (on PhDs) are used to illustrate the approach.
Resumo:
A switch-mode assisted linear amplifier (SMALA) combining a linear (Class B) and a switch-mode (Class D) amplifier is presented. The usual single hysteretic controlled half-bridge current dumping stage is replaced by two parallel buck converter stages, in a parallel voltage controlled topology. These operate independently: one buck converter sources current to assist the upper Class B output device, and a complementary converter sinks current to assist the lower device. This topology lends itself to a novel control approach of a dead-band at low power levels where neither class D amplifier assists, allowing the class B amplifier to supply the load without interference, ensuring high fidelity. A 20 W implementation demonstrates 85% efficiency, with distortion below 0.08% measured across the full audio bandwidth at 15 W. The class D amplifier begins assisting at 2 W, and below this value, the distortion was below 0.03%. Complete circuitry is given, showing the simplicity of the additional class D amplifier and its corresponding control circuitry.
Resumo:
UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag-2 (+) is compared with a literature spectrum as a further benchmark.
Resumo:
A combined data matrix consisting of high performance liquid chromatography–diode array detector (HPLC–DAD) and inductively coupled plasma-mass spectrometry (ICP-MS) measurements of samples from the plant roots of the Cortex moutan (CM), produced much better classification and prediction results in comparison with those obtained from either of the individual data sets. The HPLC peaks (organic components) of the CM samples, and the ICP-MS measurements (trace metal elements) were investigated with the use of principal component analysis (PCA) and the linear discriminant analysis (LDA) methods of data analysis; essentially, qualitative results suggested that discrimination of the CM samples from three different provinces was possible with the combined matrix producing best results. Another three methods, K-nearest neighbor (KNN), back-propagation artificial neural network (BP-ANN) and least squares support vector machines (LS-SVM) were applied for the classification and prediction of the samples. Again, the combined data matrix analyzed by the KNN method produced best results (100% correct; prediction set data). Additionally, multiple linear regression (MLR) was utilized to explore any relationship between the organic constituents and the metal elements of the CM samples; the extracted linear regression equations showed that the essential metals as well as some metallic pollutants were related to the organic compounds on the basis of their concentrations
Resumo:
Employing an error control code is one of the techniques to reduce the Peak-to-Average Power Ratio (PAPR) in a Orthogonal Frequency Division Multiplexing system, a well known class of such codes being the cosets of Reed-Muller codes. In this paper, we consider the class of such coset-codes of arbitrary linear codes and present a method of doubling the size of such a code without increasing the PAPR, by combining two such binary coset-codes. We identify the conditions under which we can employ this doubling more than once with no marginal increase in the PAPR value. Given a PAPR and length, our method has enabled to get the best coset-code (in terms of the size). Also, we show that the PAPR information of the coset-codes of the extended codes is obtainable from the PAPR of the corresponding coset-codes of the parent code. We have also shown a special type of lengthening is useful in PAPR studies.
Resumo:
In document community support vector machines and naïve bayes classifier are known for their simplistic yet excellent performance. Normally the feature subsets used by these two approaches complement each other, however a little has been done to combine them. The essence of this paper is a linear classifier, very similar to these two. We propose a novel way of combining these two approaches, which synthesizes best of them into a hybrid model. We evaluate the proposed approach using 20ng dataset, and compare it with its counterparts. The efficacy of our results strongly corroborate the effectiveness of our approach.
Resumo:
This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.
We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.
We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.
We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.
Resumo:
21 p.
Resumo:
The response of linear, viscous damped systems to excitations having time-varying frequency is the subject of exact and approximate analyses, which are supplemented by an analog computer study of single degree of freedom system response to excitations having frequencies depending linearly and exponentially on time.
The technique of small perturbations and the methods of stationary phase and saddle-point integration, as well as a novel bounding procedure, are utilized to derive approximate expressions characterizing the system response envelope—particularly near resonances—for the general time-varying excitation frequency.
Descriptive measurements of system resonant behavior recorded during the course of the analog study—maximum response, excitation frequency at which maximum response occurs, and the width of the response peak at the half-power level—are investigated to determine dependence upon natural frequency, damping, and the functional form of the excitation frequency.
The laboratory problem of determining the properties of a physical system from records of its response to excitations of this class is considered, and the transient phenomenon known as “ringing” is treated briefly.
It is shown that system resonant behavior, as portrayed by the above measurements and expressions, is relatively insensitive to the specifics of the excitation frequency-time relation and may be described to good order in terms of parameters combining system properties with the time derivative of excitation frequency evaluated at resonance.
One of these parameters is shown useful for predicting whether or not a given excitation having a time-varying frequency will produce strong or subtle changes in the response envelope of a given system relative to the steady-state response envelope. The parameter is shown, additionally, to be useful for predicting whether or not a particular response record will exhibit the “ringing” phenomenon.
Resumo:
A computational impact analysis methodology has been developed, based on modal analysis and a local contact force-deflection model. The contact law is based on Hertz contact theory while contact stresses are elastic, defines a modified contact theory to take account of local permanent indentation, and considers elastic recovery during unloading. The model was validated experimentally through impact testing of glass-carbon hybrid braided composite panels. Specimens were mounted in a support frame and the contact force was inferred from the deceleration of the impactor, measured by high-speed photography. A Finite Element analysis of the panel and support frame assembly was performed to compute the modal responses. The new contact model performed well in predicting the peak forces and impact durations for moderate energy impacts (15 J), where contact stresses locally exceed the linear elastic limit and damage may be deemed to have occurred. C-scan measurements revealed substantial damage for impact energies in the range of 30-50 J. For this regime the new model predictions might be improved by characterisation of the contact law hysteresis during the unloading phase, and a modification of the elastic vibration response in line with damage levels acquired during the impact. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Magnetic shielding efficiency was measured on high- Tc superconducting hollow cylinders subjected to either an axial or a transverse magnetic field in a large range of field sweep rates, dBapp/dt. The behaviour of the superconductor was modelled in order to reproduce the main features of the field penetration curves by using a minimum number of free parameters suitable for both magnetic field orientations. The field penetration measurements were carried out on Pb-doped Bi-2223 tubes at 77K by applying linearly increasing magnetic fields with a constant sweep rate ranging between 10νTs-1 and 10mTs-1 for both directions of the applied magnetic field. The experimental curves of the internal field versus the applied field, Bin(Bapp), show that, at a given sweep rate, the magnetic field for which the penetration occurs, Blim, is lower for the transverse configuration than for the axial configuration. A power law dependence with large exponent, n′, is found between Blim and dBapp/dt. The values of n′ are nearly the same for both configurations. We show that the main features of the curves B in(Bapp) can be reproduced using a simple 2D model, based on the method of Brandt, involving a E(J) power law with an n-exponent and a field-dependent critical current density, Jc(B), (following the Kim model: Jc = Jc0(1+B/B1)-1). In particular, a linear relationship between the measured n′-exponents and the n-exponent of the E(J) power law is suggested by taking into account the field dependence of the critical current density. Differences between the axial and the transverse shielding properties can be simply attributed to demagnetizing fields. © 2009 IOP Publishing Ltd.
Resumo:
A new active antenna structure with applications in quasi-optical power combining is described. The active antenna combines a slotline FET oscillator with a notch antenna. The new structure was successfully used to create both E-plane and H-plane linear arrays as well as a 2-D array. Preliminary results of radiation patterns and the power combining efficiencies of the arrays are discussed.