884 resultados para Linear accelerators
Resumo:
This paper presents a study about the operation of the major system’s components of a linear particle acclerator (Linac). It addresses the components mainly responsible for the formation of the beam, through the inclusion of several block diagrams showing the details of the structure. Among the systems discussed may be mentioned the system modulator, automatic frequency control, dosimetry and auxiliary systems. The main objective is the dissemination of basic technology applied in linear accelerators and create literature about this subject in national language. Despite the high complexity and large number of devices that comprise a linear accelerator, it has been developed an easy to understand text that adresses the most relevant issues to the operation of the linear accelerator from the point of view of electrical engineering
Resumo:
BEAMnrc, a code for simulating medical linear accelerators based on EGSnrc, has been bench-marked and used extensively in the scientific literature and is therefore often considered to be the gold standard for Monte Carlo simulations for radiotherapy applications. However, its long computation times make it too slow for the clinical routine and often even for research purposes without a large investment in computing resources. VMC++ is a much faster code thanks to the intensive use of variance reduction techniques and a much faster implementation of the condensed history technique for charged particle transport. A research version of this code is also capable of simulating the full head of linear accelerators operated in photon mode (excluding multileaf collimators, hard and dynamic wedges). In this work, a validation of the full head simulation at 6 and 18 MV is performed, simulating with VMC++ and BEAMnrc the addition of one head component at a time and comparing the resulting phase space files. For the comparison, photon and electron fluence, photon energy fluence, mean energy, and photon spectra are considered. The largest absolute differences are found in the energy fluences. For all the simulations of the different head components, a very good agreement (differences in energy fluences between VMC++ and BEAMnrc <1%) is obtained. Only a particular case at 6 MV shows a somewhat larger energy fluence difference of 1.4%. Dosimetrically, these phase space differences imply an agreement between both codes at the <1% level, making VMC++ head module suitable for full head simulations with considerable gain in efficiency and without loss of accuracy.
Resumo:
This Habilitationsschrift (Habilitation thesis) is focused on my research activities on medical applications of particle physics and was written in 2013 to obtain the Venia Docendi (Habilitation) in experimental physics at the University of Bern. It is based on selected publications, which represented at that time my major scientific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. The thesis is structured in two parts. In Part I, Chapter 1 presents an introduction to accelerators and detectors applied to medicine, with particular focus on cancer hadrontherapy and on the production of radioactive isotopes. In Chapter 2, my publications on medical particle accelerators are introduced and put into their perspective. In particular, high frequency linear accelerators for hadrontherapy are discussed together with the new Bern cyclotron laboratory. Chapter 3 is dedicated to particle detectors with particular emphasis on three instruments I contributed to propose and develop: segmented ionization chambers for hadrontherapy, a proton radiography apparatus with nuclear emulsion films, and a beam monitor detector for ion beams based on doped silica fibres. Selected research and review papers are contained in Part II. For copyright reasons, they are only listed and not reprinted in this on-line version. They are available on the websites of the journals.
Resumo:
CONF-860629; UC-28.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde.
Resumo:
La collaboration CLIC (Compact LInear Collider, collisionneur linéaire compact) étudie la possibilité de réaliser un collisionneur électron-positon linéaire à haute énergie (3 TeV dans le centre de masse) et haute luminosité (1034 cm-2s-1), pour la recherche en physique des particules. Le projet CLIC se fonde sur l'utilisation de cavités accélératrices à haute fréquence (30 GHz). La puissance nécessaire à ces cavités est fournie par un faisceau d'électrons de basse énergie et de haute intensité, appelé faisceau de puissance, circulant parallèlement à l'accélérateur linéaire principal (procédé appelé « Accélération à Double Faisceau »). Dans ce schéma, un des principaux défis est la réalisation du faisceau de puissance, qui est d'abord généré dans un complexe accélérateur à basse fréquence, puis transformé pour obtenir une structure temporelle à haute fréquence nécessaire à l'alimentation des cavités accélératrices de l'accélérateur linéaire principal. La structure temporelle à haute fréquence des paquets d'électrons est obtenue par le procédé de multiplication de fréquence, dont la manipulation principale consiste à faire circuler le faisceau d'électrons dans un anneau isochrone en utilisant des déflecteurs radio-fréquence (déflecteurs RF) pour injecter et combiner les paquets d'électrons. Cependant, ce type de manipulation n'a jamais été réalisé auparavant et la première phase de la troisième installation de test pour CLIC (CLIC Test Facility 3 ou CTF3) a pour but la démonstration à faible charge du procédé de multiplication de fréquence par injection RF dans un anneau isochrone. Cette expérience, qui a été réalisée avec succès au CERN au cours de l'année 2002 en utilisant une version modifiée du pré-injecteur du grand collisionneur électron-positon LEP (Large Electron Positron), est le sujet central de ce rapport. L'expérience de combinaison des paquets d'électrons consiste à accélérer cinq impulsions dont les paquets d'électrons sont espacés de 10 cm, puis à les combiner dans un anneau isochrone pour obtenir une seule impulsion dont les paquets d'électrons sont espacés de 2 cm, multipliant ainsi la fréquence des paquets d'électrons, ainsi que la charge par impulsion, par cinq. Cette combinaison est réalisée au moyen de structures RF résonnantes sur un mode déflecteur, qui créent dans l'anneau une déformation locale et dépendante du temps de l'orbite du faisceau. Ce mécanisme impose plusieurs contraintes de dynamique de faisceau comme l'isochronicité, ainsi que des tolérances spécifiques sur les paquets d'électrons, qui sont définies dans ce rapport. Les études pour la conception de la Phase Préliminaire du CTF3 sont détaillées, en particulier le nouveau procédé d'injection avec les déflecteurs RF. Les tests de haute puissance réalisés sur ces cavités déflectrices avant leur installation dans l'anneau sont également décrits. L'activité de mise en fonctionnement de l'expérience est présentée en comparant les mesures faites avec le faisceau aux simulations et calculs théoriques. Finalement, les expériences de multiplication de fréquence des paquets d'électrons sont décrites et analysées. On montre qu'une très bonne efficacité de combinaison est possible après optimisation des paramètres de l'injection et des déflecteurs RF. En plus de l'expérience acquise sur l'utilisation de ces déflecteurs, des conclusions importantes pour les futures activités CTF3 et CLIC sont tirées de cette première démonstration de la multiplication de fréquence des paquets d'électrons par injection RF dans un anneau isochrone.<br/><br/>The Compact LInear Collider (CLIC) collaboration studies the possibility of building a multi-TeV (3 TeV centre-of-mass), high-luminosity (1034 cm-2s-1) electron-positron collider for particle physics. The CLIC scheme is based on high-frequency (30 GHz) linear accelerators powered by a low-energy, high-intensity drive beam running parallel to the main linear accelerators (Two-Beam Acceleration concept). One of the main challenges to realize this scheme is to generate the drive beam in a low-frequency accelerator and to achieve the required high-frequency bunch structure needed for the final acceleration. In order to provide bunch frequency multiplication, the main manipulation consists in sending the beam through an isochronous combiner ring using radio-frequency (RF) deflectors to inject and combine electron bunches. However, such a scheme has never been used before, and the first stage of the CLIC Test Facility 3 (CTF3) project aims at a low-charge demonstration of the bunch frequency multiplication by RF injection into an isochronous ring. This proof-of-principle experiment, which was successfully performed at CERN in 2002 using a modified version of the LEP (Large Electron Positron) pre-injector complex, is the central subject of this report. The bunch combination experiment consists in accelerating in a linear accelerator five pulses in which the electron bunches are spaced by 10 cm, and combining them in an isochronous ring to obtain one pulse in which the electron bunches are spaced by 2 cm, thus achieving a bunch frequency multiplication of a factor five, and increasing the charge per pulse by a factor five. The combination is done by means of RF deflecting cavities that create a time-dependent bump inside the ring, thus allowing the interleaving of the bunches of the five pulses. This process imposes several beam dynamics constraints, such as isochronicity, and specific tolerances on the electron bunches that are defined in this report. The design studies of the CTF3 Preliminary Phase are detailed, with emphasis on the novel injection process using RF deflectors. The high power tests performed on the RF deflectors prior to their installation in the ring are also reported. The commissioning activity is presented by comparing beam measurements to model simulations and theoretical expectations. Eventually, the bunch frequency multiplication experiments are described and analysed. It is shown that the process of bunch frequency multiplication is feasible with a very good efficiency after a careful optimisation of the injection and RF deflector parameters. In addition to the experience acquired in the operation of these RF deflectors, important conclusions for future CTF3 and CLIC activities are drawn from this first demonstration of the bunch frequency multiplication by RF injection into an isochronous ring.<br/><br/>La collaboration CLIC (Compact LInear Collider, collisionneur linéaire compact) étudie la possibilité de réaliser un collisionneur électron-positon linéaire à haute énergie (3 TeV) pour la recherche en physique des particules. Le projet CLIC se fonde sur l'utilisation de cavités accélératrices à haute fréquence (30 GHz). La puissance nécessaire à ces cavités est fournie par un faisceau d'électrons de basse énergie et de haut courant, appelé faisceau de puissance, circulant parallèlement à l'accélérateur linéaire principal (procédé appelé « Accélération à Double Faisceau »). Dans ce schéma, un des principaux défis est la réalisation du faisceau de puissance, qui est d'abord généré dans un complexe accélérateur à basse fréquence, puis transformé pour obtenir une structure temporelle à haute fréquence nécessaire à l'alimentation des cavités accélératrices de l'accélérateur linéaire principal. La structure temporelle à haute fréquence des paquets d'électrons est obtenue par le procédé de multiplication de fréquence, dont la manipulation principale consiste à faire circuler le faisceau d'électrons dans un anneau isochrone en utilisant des déflecteurs radio-fréquence (déflecteurs RF) pour injecter et combiner les paquets d'électrons. Cependant, ce type de manipulation n'a jamais été réalisé auparavant et la première phase de la troisième installation de test pour CLIC (CLIC Test Facility 3 ou CTF3) a pour but la démonstration à faible charge du procédé de multiplication de fréquence par injection RF dans un anneau isochrone. L'expérience consiste à accélérer cinq impulsions, puis à les combiner dans un anneau isochrone pour obtenir une seule impulsion dans laquelle la fréquence des paquets d'électrons et le courant sont multipliés par cinq. Cette combinaison est réalisée au moyen de structures déflectrices RF qui créent dans l'anneau une déformation locale et dépendante du temps de la trajectoire du faisceau. Les résultats de cette expérience, qui a été réalisée avec succès au CERN au cours de l?année 2002 en utilisant une version modifiée du pré-injecteur du grand collisionneur électron-positon LEP (Large Electron Positon), sont présentés en détail.
Resumo:
Background: Documenting the distribution of radiotherapy departments and the availability of radiotherapy equipment in the European countries is an important part of HERO the ESTRO Health Economics in Radiation Oncology project. HERO has the overall aim to develop a knowledge base of the provision of radiotherapy in Europe and build a model for health economic evaluation of radiation treatments at the European level. The aim of the current report is to describe the distribution of radiotherapy equipment in European countries. Methods: An 84-item questionnaire was sent out to European countries, principally through their national societies. The current report includes a detailed analysis of radiotherapy departments and equipment (questionnaire items 2629), analyzed in relation to the annual number of treatment courses and the socio-economic status of the countries. The analysis is based on validated responses from 28 of the 40 European countries defined by the European Cancer Observatory (ECO). Results: A large variation between countries was found for most parameters studied. There were 2192 linear accelerators, 96 dedicated stereotactic machines, and 77 cobalt machines reported in the 27 countries where this information was available. A total of 12 countries had at least one cobalt machine in use. There was a median of 0.5 simulator per MV unit (range 0.31.5) and 1.4 (range 0.44.4) simulators per department. Of the 874 simulators, a total of 654 (75%) were capable of 3D imaging (CT-scanner or CBCToption). The number of MV machines (cobalt, linear accelerators, and dedicated stereotactic machines) per million inhabitants ranged from 1.4 to 9.5 (median 5.3) and the average number of MV machines per department from 0.9 to 8.2 (median 2.6). The average number of treatment courses per year per MV machine varied from 262 to 1061 (median 419). While 69% of MV units were capable of IMRT only 49% were equipped for image guidance (IGRT). There was a clear relation between socio-economic status, as measured by GNI per capita, and availability of radiotherapy equipment in the countries. In many low income countries in Southern and Central-Eastern Europe there was very limited access to radiotherapy and especially to equipment for IMRT or IGRT. Conclusions: The European average number of MV machines per million inhabitants and per department is now better in line with QUARTS recommendations from 2005, but the survey also showed a significant heterogeneity in the access to modern radiotherapy equipment in Europe. High income countries especially in Northern-Western Europe are well-served with radiotherapy resources, other countries are facing important shortages of both equipment in general and especially machines capable of delivering high precision conformal treatments (IMRT, IGRT)
Resumo:
A major challenge in cancer radiotherapy is to deliver a lethal dose of radiation to the target volume while minimizing damage to the surrounding normal tissue. We have proposed a model on how treatment efficacy might be improved by interfering with biological responses to DNA damage using exogenous electric fields as a strategy to drastically reduce radiation doses in cancer therapy. This approach is demonstrated at this Laboratory through case studies with prokaryotes (bacteria) and eukaryotes (yeast) cells, in which cellkilling rates induced by both gamma radiation and exogenous electric fields were measured. It was found that when cells exposed to gamma radiation are immediately submitted to a weak electric field, cell death increases more than an order of magnitude compared to the effect of radiation alone. This finding suggests, although does not prove, that DNA damage sites are reached and recognized by means of long-range electric DNA-protein interaction, and that exogenous electric fields could destructively interfere with this process. As a consequence, DNA repair is avoided leading to massive cell death. Here we are proposing the use this new technique for the design and construction of novel radiotherapy facilities associated with linac generated gamma beams under controlled conditions of dose and beam intensity.
Resumo:
In radiation theraphy with electron beam, the electrons are produced in linear accelerators, and energy the most used have between 4MeV and 20MeV. Generally, the treatments are done for superficial injuries, because the low penetration of these particles. In this work a system for calculation of monitor units (U.M.) for cases of treatments with electron beam was developed. The Excel program of Microsoft was used and is easily found in the operational system of the personal microcomputers. In the Excel has been inserted the pertinent data of the linear accelerator of Varian, model 2100C, used in the Service of radiation theraphy of the Hospital of the Clinics of the College of Medicine of the UNESP of Botucatu. For some values of the physical parameters, such as: factors field and factors calibration, not supplied in the tests of acceptance of the machine, still proceeded calculations from interpolation and extrapolation. The mathematical formulas for automatic search of these and others factors used in the calculations of the determination of the U.M had been developed in agreement available routines in Excel. For this the functions had been used the function IF (that it imposes search condition) and the PROCH (that looks a value in a column from determined line), beyond the basic functions of addition, multiplication and division. It is intended to optimize the routine of the Services of radiation theraphy that perform through eletrontheraphy procedures, speeding the calculations and minimizing the occurrence of errors and uncertainties deriving of the maken a mistake manipulation of the parameters gotten in tables of data of electron beams
Resumo:
The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation for 4 and 6 MeV electron beams of Varian linear accelerators.
Resumo:
The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.
Resumo:
Monte Carlo (MC) method can accurately compute the dose produced by medical linear accelerators. However, these calculations require a reliable description of the electron and/or photon beams delivering the dose, the phase space (PHSP), which is not usually available. A method to derive a phase space model from reference measurements that does not heavily rely on a detailed model of the accelerator head is presented. The iterative optimization process extracts the characteristics of the particle beams which best explains the reference dose measurements in water and air, given a set of constrains
Resumo:
AEC Contract AT(04-3)-400.
Resumo:
AEC Contract AT(04-3)-400.