995 resultados para Linear accelerator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this poster outlines the steps taken to model a 4 mm conical collimator (BrainLab, Germany) on a Novalis Tx linear accelerator (Varian, Palo Alto, USA) capable of producing a 6MV photon beam for treatment of Stereotactic Radiosurgery (SRS) patients. The verification of this model was performed by measurements in liquid water and in virtual water. The measurements involved scanning depth dose and profiles in a water tank plus measurement of output factors in virtual water using Gafchromic® EBT3 film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate patient positioning is vital for improved clinical outcomes for cancer treatments using radiotherapy. This project has developed Mega Voltage Cone Beam CT using a standard medical linear accelerator to allow 3D imaging of the patient position at treatment time with no additional hardware required. Providing 3D imaging functionality at no further cost allows enhanced patient position verification on older linear accelerators and in developing countries where access to new technology is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological dose escalation through stereotactic ablative radiotherapy (SABR) holds promise of improved patient convenience, system capacity and tumor control with decreased cost and side effects. The objectives are to report the toxicities, biochemical and pathologic outcomes of this prospective study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The dose delivery accuracy of 30 clinical step and shoot intensity modulated radiation therapy plans was investigated using the single integrated multileaf collimator controller of the Varian Truebeam linear accelerator (linac) (Varian Medical Systems, Palo Alto, CA) and compared with the dose delivery accuracy on a previous generation Varian 2100CD C-Series linac.

Methods and Materials: Ten prostate, 10 prostate and pelvic node, and 10 head-and-neck cases were investigated in this study. Dose delivery accuracy on each linac was assessed using Farmer ionization chamber point dose measurements, 2-dimensional planar ionization chamber array measurements, and the corresponding Varian dynamic log files. Absolute point dose measurements, fluence delivery accuracy, leaf position accuracy, and the overshoot effect were assessed for each plan.

Results: Absolute point dose delivery accuracy increased by 1.5% on the Truebeam compared with the 2100CD linac. No improvement in fluence delivery accuracy between the linacs, at a gamma criterion of 3%/3 mm was measured using the 2-dimensional ionization chamber array, with median (interquartile range) gamma passing rates of 98.99% (97.70%-99.72%) and 99.28% (98.26%-99.75%) for the Truebeam and 2100CD linacs, respectively. Varian log files also showed no improvement in fluence delivery between the linacs at 3%/3 mm, with median gamma passing rates of 99.97% (99.93%-99.99%) and 99.98% (99.94%-100%) for the Truebeam and 2100CD linacs, respectively. However, log files revealed improved leaf position accuracy and fluence delivery at 1%/1 mm criterion on the Truebeam (99.87%; 99.78%-99.94%) compared with the 2100CD linac (97.87%; 91.93%-99.49%). The overshoot effect, characterized on the 2100CD linac, was not observed on the Truebeam.

Conclusions: The integrated multileaf collimator controller on the Varian Truebeam improves clinical treatment delivery accuracy of step and shoot intensity modulated radiation therapy fields compared with delivery on a Varian C-series linac. © 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper I will present the work I have completed during a five months work placement at CERN, European Organisation for Nuclear Research, from March to July 2011. This stage was done in the EN Department (ENgineering Department), STI Group (Sources, Targets and Interactions), TCD Section (Targets, Collimators and Dumps) under the supervision of Dr Cesare Maglioni. The task I was given concerned all the beam stoppers in the PS Complex, in detail: - General definition and requirements - Creation of a digital archive - Verification of the stoppers of the PS Complex - Design of the L4T.STP.1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the local control and complication rates for children with papillary and/or macular retinoblastoma progressing after chemotherapy and undergoing stereotactic radiotherapy (SRT) with a micromultileaf collimator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BEAMnrc, a code for simulating medical linear accelerators based on EGSnrc, has been bench-marked and used extensively in the scientific literature and is therefore often considered to be the gold standard for Monte Carlo simulations for radiotherapy applications. However, its long computation times make it too slow for the clinical routine and often even for research purposes without a large investment in computing resources. VMC++ is a much faster code thanks to the intensive use of variance reduction techniques and a much faster implementation of the condensed history technique for charged particle transport. A research version of this code is also capable of simulating the full head of linear accelerators operated in photon mode (excluding multileaf collimators, hard and dynamic wedges). In this work, a validation of the full head simulation at 6 and 18 MV is performed, simulating with VMC++ and BEAMnrc the addition of one head component at a time and comparing the resulting phase space files. For the comparison, photon and electron fluence, photon energy fluence, mean energy, and photon spectra are considered. The largest absolute differences are found in the energy fluences. For all the simulations of the different head components, a very good agreement (differences in energy fluences between VMC++ and BEAMnrc <1%) is obtained. Only a particular case at 6 MV shows a somewhat larger energy fluence difference of 1.4%. Dosimetrically, these phase space differences imply an agreement between both codes at the <1% level, making VMC++ head module suitable for full head simulations with considerable gain in efficiency and without loss of accuracy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Linear acceleration emission occurs when a charged particle is accelerated parallel to its velocity. We evaluate the spectral and angular distribution of this radiation for several special cases, including constant acceleration (hyperbolic motion) of finite duration. Based on these results, we find the following general properties of the emission from an electron in a linear accelerator that can be characterized by an electric field E acting over a distance L: (1) the spectrum extends to a cutoff frequency (h) over bar omega(c)/mc(2) approximate to L(E/E(Schw))(2)/(lambda) over bar (C), where E(Schw) = 1.3 x 10(18) V m(-1) is the Schwinger critical field and (lambda) over bar (C) = (h) over bar /mc = 3.86 x 10(-13) m is the Compton wavelength of the electron, (2) the total energy emitted by a particle traversing the accelerator is 4/3 alpha(f)(h) over bar omega(c) in accordance with the standard Larmor formula where alpha(f) is the fine-structure constant, and (3) the low frequency spectrum is flat for hyperbolic trajectories, but in general depends on the details of the accelerator. We also show that linear acceleration emission complements curvature radiation in the strongly magnetized pair formation regions in pulsar magnetospheres. It dominates when the length L of the accelerator is less than the formation length rho/gamma of curvature photons, where rho is the radius of curvature of the magnetic field lines and gamma the Lorentz factor of the emitting particle. In standard static models of pair creating regions linear acceleration emission is negligible, but it is important in more realistic dynamical models in which the accelerating field fluctuates on a short length scale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We will present measurements and calculations related to the antisymmetric perturbations, and comparisons with the symmetric ones, of the IFUSP race-track microtron booster accelerator end magnets. These perturbations were measured in planes situated at +/-12 mm of the middle plane, in a gap height of 4 cm, for a field distribution of about 0.1 T. The measurements were done in 1170 points, separated by a distance of 8 mm, using an automated system with a +/-1.5 mu T differential Hall probe. The race-track microtron booster is the second stage of the 30.0 MeV electron accelerator under construction at the Linear Accelerator Laboratory in which the required uniformity for the magnetic field is of about 10(-3). The method of correction employed to homogenize the IFUSP race-track microtron booster accelerator magnets assures uniformity of 10(-5) in an average field of 0.1 T, over an area of 700 cm(2). This method uses the principle of attaching to the pole pieces correction coils produced by etching techniques, with copper leads shaped like the isofield lines of the normal component of the magnetic field measured. The ideal planes, in which these measurements are done, are calculated and depend on the behavior of the magnetic field perturbations: symmetric or antisymmetric with reference to the middle plane of the magnet gap. These calculations are presented in this work and show that for antisymmetric perturbations there is no ideal plane for the correction of the magnetic field; for the symmetric one, these planes are at +/-60% of the half gap height, from the middle plane. So this method of correction is not feasible for antisymmetric perturbations, as will be shown. Besides, the correction of the symmetric portion of the field distribution does not influence the antisymmetric one, which almost does not change, and corroborates the theoretical predictions. We found antisymmetric perturbations of small intensity only in one of the two end magnets. However, they are not detected at +/- 1 mm of the middle plane and will not damage the electron beam.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The treatment of a tumor with ionizing radiation is an ongoing process with well differentiated stages. These ones include the tumor diagnosis and location, the decision on the treatment strategy, the absorbed dose planning and calculation, the treatment administration, the absorbed dose verification and the evaluation of results in short and long terms. The quality of a radiotherapy procedure is closely linked to factors that may be classified as clinical, such as the diagnosis, the tumor location, the treatment strategy chosen and the continuous treatment reassessment; dosimetric or physical, such as the uncertainty in the dose calculation, its optimization and verification, the suitability of the equipment to provide a radiation beam consistent with the treatment planning; finally, others which are related to the practical application of radiotherapy treatment and the handling of the patient. In order to analyze the radiotherapy quality, one should realize that the three aspects (medical, physical or dosimetric and practical application) should be considered in a combined way. This means that numerous actions of the radiotherapists, medical physicists and technicians in radiotherapy should be held jointly and their knowledge level will significantly affect the treatment quality. In this study, the main physical parameters used in dosimetry are defined as well as determined experimentally for a linear accelerator Mevatron - MXT. With this, it is intended to provide recommendations for the physical aspects of Quality Assurance (QA) in the radiotherapy treatments, and these will usually be applied by professionals in Medical Physics. In addition to these instructions, it is recommended that additional texts are prepared to address in detail the clinical aspects of the treatments QA

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a study about the operation of the major system’s components of a linear particle acclerator (Linac). It addresses the components mainly responsible for the formation of the beam, through the inclusion of several block diagrams showing the details of the structure. Among the systems discussed may be mentioned the system modulator, automatic frequency control, dosimetry and auxiliary systems. The main objective is the dissemination of basic technology applied in linear accelerators and create literature about this subject in national language. Despite the high complexity and large number of devices that comprise a linear accelerator, it has been developed an easy to understand text that adresses the most relevant issues to the operation of the linear accelerator from the point of view of electrical engineering