810 resultados para Linde-Buzo-Gray Algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature discretization (FD) techniques often yield adequate and compact representations of the data, suitable for machine learning and pattern recognition problems. These representations usually decrease the training time, yielding higher classification accuracy while allowing for humans to better understand and visualize the data, as compared to the use of the original features. This paper proposes two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray quantization algorithm, coupled with a relevance criterion, being able perform unsupervised, supervised, or semi-supervised discretization. The second technique works in supervised mode, being based on the maximization of the mutual information between each discrete feature and the class label. Our experimental results on standard benchmark datasets show that these techniques scale up to high-dimensional data, attaining in many cases better accuracy than existing unsupervised and supervised FD approaches, while using fewer discretization intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ln this work the implementation of the SOM (Self Organizing Maps) algorithm or Kohonen neural network is presented in the form of hierarchical structures, applied to the compression of images. The main objective of this approach is to develop an Hierarchical SOM algorithm with static structure and another one with dynamic structure to generate codebooks (books of codes) in the process of the image Vector Quantization (VQ), reducing the time of processing and obtaining a good rate of compression of images with a minimum degradation of the quality in relation to the original image. Both self-organizing neural networks developed here, were denominated HSOM, for static case, and DHSOM, for the dynamic case. ln the first form, the hierarchical structure is previously defined and in the later this structure grows in an automatic way in agreement with heuristic rules that explore the data of the training group without use of external parameters. For the network, the heuristic mIes determine the dynamics of growth, the pruning of ramifications criteria, the flexibility and the size of children maps. The LBO (Linde-Buzo-Oray) algorithm or K-means, one ofthe more used algorithms to develop codebook for Vector Quantization, was used together with the algorithm of Kohonen in its basic form, that is, not hierarchical, as a reference to compare the performance of the algorithms here proposed. A performance analysis between the two hierarchical structures is also accomplished in this work. The efficiency of the proposed processing is verified by the reduction in the complexity computational compared to the traditional algorithms, as well as, through the quantitative analysis of the images reconstructed in function of the parameters: (PSNR) peak signal-to-noise ratio and (MSE) medium squared error

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technological progress has made a huge amount of data available at increasing spatial and spectral resolutions. Therefore, the compression of hyperspectral data is an area of active research. In somefields, the original quality of a hyperspectral image cannot be compromised andin these cases, lossless compression is mandatory. The main goal of this thesisis to provide improved methods for the lossless compression of hyperspectral images. Both prediction- and transform-based methods are studied. Two kinds of prediction based methods are being studied. In the first method the spectra of a hyperspectral image are first clustered and and an optimized linear predictor is calculated for each cluster. In the second prediction method linear prediction coefficients are not fixed but are recalculated for each pixel. A parallel implementation of the above-mentioned linear prediction method is also presented. Also,two transform-based methods are being presented. Vector Quantization (VQ) was used together with a new coding of the residual image. In addition we have developed a new back end for a compression method utilizing Principal Component Analysis (PCA) and Integer Wavelet Transform (IWT). The performance of the compressionmethods are compared to that of other compression methods. The results show that the proposed linear prediction methods outperform the previous methods. In addition, a novel fast exact nearest-neighbor search method is developed. The search method is used to speed up the Linde-Buzo-Gray (LBG) clustering method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studies gray-level distance transforms, particularly the Distance Transform on Curved Space (DTOCS). The transform is produced by calculating distances on a gray-level surface. The DTOCS is improved by definingmore accurate local distances, and developing a faster transformation algorithm. The Optimal DTOCS enhances the locally Euclidean Weighted DTOCS (WDTOCS) with local distance coefficients, which minimize the maximum error from the Euclideandistance in the image plane, and produce more accurate global distance values.Convergence properties of the traditional mask operation, or sequential localtransformation, and the ordered propagation approach are analyzed, and compared to the new efficient priority pixel queue algorithm. The Route DTOCS algorithmdeveloped in this work can be used to find and visualize shortest routes between two points, or two point sets, along a varying height surface. In a digital image, there can be several paths sharing the same minimal length, and the Route DTOCS visualizes them all. A single optimal path can be extracted from the route set using a simple backtracking algorithm. A new extension of the priority pixel queue algorithm produces the nearest neighbor transform, or Voronoi or Dirichlet tessellation, simultaneously with the distance map. The transformation divides the image into regions so that each pixel belongs to the region surrounding the reference point, which is nearest according to the distance definition used. Applications and application ideas for the DTOCS and its extensions are presented, including obstacle avoidance, image compression and surface roughness evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient’s medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.

Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.

Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.

Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary craniocervical dystonia (CCD) is generally attributed to functional abnormalities in the cortico-striato-pallido-thalamocortical loops, but cerebellar pathways have also been implicated in neuroimaging studies. Hence, our purpose was to perform a volumetric evaluation of the infratentorial structures in CCD. We compared 35 DYT1/DYT6 negative patients with CCD and 35 healthy controls. Cerebellar volume was evaluated using manual volumetry (DISPLAY software) and infratentorial volume by voxel based morphometry of gray matter (GM) segments derived from T1 weighted 3 T MRI using the SUIT tool (SPM8/Dartel). We used t-tests to compare infratentorial volumes between groups. Cerebellar volume was (1.14 ± 0.17) × 10(2) cm(3) for controls and (1.13 ± 0.14) × 10(2) cm(3) for patients; p = 0.74. VBM demonstrated GM increase in the left I-IV cerebellar lobules and GM decrease in the left lobules VI and Crus I and in the right lobules VI, Crus I and VIIIb. In a secondary analysis, VBM demonstrated GM increase also in the brainstem, mostly in the pons. While gray matter increase is observed in the anterior lobe of the cerebellum and in the brainstem, the atrophy is concentrated in the posterior lobe of the cerebellum, demonstrating a differential pattern of infratentorial involvement in CCD. This study shows subtle structural abnormalities of the cerebellum and brainstem in primary CCD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To compare the Full Threshold (FT) and SITA Standard (SS) strategies in glaucomatous patients undergoing automated perimetry for the first time. METHODS: Thirty-one glaucomatous patients who had never undergone perimetry underwent automated perimetry (Humphrey, program 30-2) with both FT and SS on the same day, with an interval of at least 15 minutes. The order of the examination was randomized, and only one eye per patient was analyzed. Three analyses were performed: a) all the examinations, regardless of the order of application; b) only the first examinations; c) only the second examinations. In order to calculate the sensitivity of both strategies, the following criteria were used to define abnormality: glaucoma hemifield test (GHT) outside normal limits, pattern standard deviation (PSD) <5%, or a cluster of 3 adjacent points with p<5% at the pattern deviation probability plot. RESULTS: When the results of all examinations were analyzed regardless of the order in which they were performed, the number of depressed points with p<0.5% in the pattern deviation probability map was significantly greater with SS (p=0.037), and the sensitivities were 87.1% for SS and 77.4% for FT (p=0.506). When only the first examinations were compared, there were no statistically significant differences regarding the number of depressed points, but the sensitivity of SS (100%) was significantly greater than that obtained with FT (70.6%) (p=0.048). When only the second examinations were compared, there were no statistically significant differences regarding the number of depressed points, and the sensitivities of SS (76.5%) and FT (85.7%) (p=0.664). CONCLUSION: SS may have a higher sensitivity than FT in glaucomatous patients undergoing automated perimetry for the first time. However, this difference tends to disappear in subsequent examinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that morphine inhibits maternal behaviors. Previous studies by our group have shown activation of the rostrolateral periaqueductal gray (rlPAG) upon inhibition-intended subcutaneous injections of morphine. In this context, we demonstrated that a single naloxone infusion into the rlPAG, following this opioid-induced inhibition, reactivated maternal behaviors. Since these data were obtained by using peripheral morphine injections, the present study was designed to test whether morphine injected directly into the rlPAG would affect maternal behaviors. Our hypothesis that morphine acting through the rlPAG would disrupt maternal behaviors was confirmed with a local infusion of morphine. The mothers showed shorter latency for locomotor behavior to explore the home cage (P = 0.049). Inhibition was especially evident regarding retrieving (P = 0.002), nest building (P = 0.05) and full maternal behavior (P = 0.023). These results support the view that opioidergic transmission plays a behaviorally meaningful inhibitory role in the rostrolateral PAG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The network of HIV counseling and testing centers in São Paulo, Brazil is a major source of data used to build epidemiological profiles of the client population. We examined HIV-1 incidence from November 2000 to April 2001, comparing epidemiological and socio-behavioral data of recently-infected individuals with those with long-standing infection. A less sensitive ELISA was employed to identify recent infection. The overall incidence of HIV-1 infection was 0.53/100/year (95% CI: 0.31-0.85/100/year): 0.77/100/year for males (95% CI: 0.42-1.27/100/year) and 0.22/100/ year (95% CI: 0.05-0.59/100/year) for females. Overall HIV-1 prevalence was 3.2% (95% CI: 2.8-3.7%), being 4.0% among males (95% CI: 3.3-4.7%) and 2.1% among females (95% CI: 1.6-2.8%). Recent infections accounted for 15% of the total (95% CI: 10.2-20.8%). Recent infection correlated with being younger and male (p = 0.019). Therefore, recent infection was more common among younger males and older females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was to experimentally investigate the thermal diffusivity of four different gray cast iron alloys, regularly used to produce brake disks for automotive vehicles. Thermal diffusivity measurements were performed at temperatures ranging from room temperature to 600 A degrees C. The influence of the thermal conductivity on the thermomechanical fatigue life is also briefly presented. The measurements were sensitive to the influence of the carbon equivalent and alloying elements, such as molybdenum, copper and chromium. Molybdenum, unlike copper, lowered the thermal diffusivity of the gray cast iron, and alloy E (without molybdenum), besides presenting a relatively low carbon equivalent content and an increase in the values of the thermal diffusivity, presented the best performance during the thermomechanical fatigue. The molybdenum present in alloys B and C did not fulfill the expectations of providing the best thermomechanical fatigue behavior. Consequently, its elimination in the gray cast iron alloy for this application will result in a significant economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.