914 resultados para Limit sets
Resumo:
We consider semidynamical systems with impulse effects at variable times and we discuss some properties of the limit sets of orbits of these systems such as invariancy, compactness and connectedness. As a consequence we obtain a version of the Poincare-Bendixson Theorem for impulsive semidynamical systems. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We establish a one-to-one correspondence between the renormalizations and proper totally invariant closed sets (i.e., α-limit sets) of expanding Lorenz map, which enable us to distinguish periodic and non-periodic renormalizations. We describe the minimal renormalization by constructing the minimal totally invariant closed set, so that we can define the renormalization operator. Using consecutive renormalizations, we obtain complete topological characteriza- tion of α-limit sets and nonwandering set decomposition. For piecewise linear Lorenz map with slopes ≥ 1, we show that each renormalization is periodic and every proper α-limit set is countable.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper is concerned with closed orbits of non-smooth vector fields on the plane. For a class of non-smooth vector fields we provide necessary and sufficient conditions for the existence of closed poly-trajectorie. By means of a regularization process we prove that hyperbolic closed poly-trajectories are limit sets of a sequence of limit cycles of smooth vector fields. In our approach the Poincaré Index for non-smooth vector fields is introduced. © 2013 Springer Science+Business Media New York.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The existing characterization of stability regions was developed under the assumption that limit sets on the stability boundary are exclusively composed of hyperbolic equilibrium points and closed orbits. The characterizations derived in this technical note are a generalization of existing results in the theory of stability regions. A characterization of the stability boundary of general autonomous nonlinear dynamical systems is developed under the assumption that limit sets on the stability boundary are composed of a countable number of disjoint and indecomposable components, which can be equilibrium points, closed orbits, quasi-periodic solutions and even chaotic invariant sets.
Resumo:
All of the imputation techniques usually applied for replacing values below thedetection limit in compositional data sets have adverse effects on the variability. In thiswork we propose a modification of the EM algorithm that is applied using the additivelog-ratio transformation. This new strategy is applied to a compositional data set and theresults are compared with the usual imputation techniques
Resumo:
All of the imputation techniques usually applied for replacing values below the detection limit in compositional data sets have adverse effects on the variability. In this work we propose a modification of the EM algorithm that is applied using the additive log-ratio transformation. This new strategy is applied to a compositional data set and the results are compared with the usual imputation techniques
Resumo:
This thesis examines two panel data sets of 48 states from 1981 to 2009 and utilizes ordinary least squares (OLS) and fixed effects models to explore the relationship between rural Interstate speed limits and fatality rates and whether rural Interstate speed limits affect non-Interstate safety. Models provide evidence that rural Interstate speed limits higher than 55 MPH lead to higher fatality rates on rural Interstates though this effect is somewhat tempered by reductions in fatality rates for roads other than rural Interstates. These results provide some but not unanimous support for the traffic diversion hypothesis that rural Interstate speed limit increases lead to decreases in fatality rates of other roads. To the author’s knowledge, this paper is the first econometric study to differentiate between the effects of 70 MPH speed limits and speed limits above 70 MPH on fatality rates using a multi-state data set. Considering both rural Interstates and other roads, rural Interstate speed limit increases above 55 MPH are responsible for 39,700 net fatalities, 4.1 percent of total fatalities from 1987, the year limits were first raised, to 2009.
Resumo:
The first section of this chapter starts with the Buffon problem, which is one of the oldest in stochastic geometry, and then continues with the definition of measures on the space of lines. The second section defines random closed sets and related measurability issues, explains how to characterize distributions of random closed sets by means of capacity functionals and introduces the concept of a selection. Based on this concept, the third section starts with the definition of the expectation and proves its convexifying effect that is related to the Lyapunov theorem for ranges of vector-valued measures. Finally, the strong law of large numbers for Minkowski sums of random sets is proved and the corresponding limit theorem is formulated. The chapter is concluded by a discussion of the union-scheme for random closed sets and a characterization of the corresponding stable laws.
Resumo:
In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed
Resumo:
In this work we report on a comparison of some theoretical models usually used to fit the dependence on temperature of the fundamental energy gap of semiconductor materials. We used in our investigations the theoretical models of Viña, Pässler-p and Pässler-ρ to fit several sets of experimental data, available in the literature for the energy gap of GaAs in the temperature range from 12 to 974 K. Performing several fittings for different values of the upper limit of the analyzed temperature range (Tmax), we were able to follow in a systematic way the evolution of the fitting parameters up to the limit of high temperatures and make a comparison between the zero-point values obtained from the different models by extrapolating the linear dependence of the gaps at high T to T = 0 K and that determined by the dependence of the gap on isotope mass. Using experimental data measured by absorption spectroscopy, we observed the non-linear behavior of Eg(T) of GaAs for T > ΘD.