945 resultados para Limit Equilibrium Method
Resumo:
The Pacaya volcanic complex is part of the Central American volcanic arc, which is associated with the subduction of the Cocos tectonic plate under the Caribbean plate. Located 30 km south of Guatemala City, Pacaya is situated on the southern rim of the Amatitlan Caldera. It is the largest post-caldera volcano, and has been one of Central America’s most active volcanoes over the last 500 years. Between 400 and 2000 years B.P, the Pacaya volcano had experienced a huge collapse, which resulted in the formation of horseshoe-shaped scarp that is still visible. In the recent years, several smaller collapses have been associated with the activity of the volcano (in 1961 and 2010) affecting its northwestern flanks, which are likely to be induced by the local and regional stress changes. The similar orientation of dry and volcanic fissures and the distribution of new vents would likely explain the reactivation of the pre-existing stress configuration responsible for the old-collapse. This paper presents the first stability analysis of the Pacaya volcanic flank. The inputs for the geological and geotechnical models were defined based on the stratigraphical, lithological, structural data, and material properties obtained from field survey and lab tests. According to the mechanical characteristics, three lithotechnical units were defined: Lava, Lava-Breccia and Breccia-Lava. The Hoek and Brown’s failure criterion was applied for each lithotechnical unit and the rock mass friction angle, apparent cohesion, and strength and deformation characteristics were computed in a specified stress range. Further, the stability of the volcano was evaluated by two-dimensional analysis performed by Limit Equilibrium (LEM, ROCSCIENCE) and Finite Element Method (FEM, PHASE 2 7.0). The stability analysis mainly focused on the modern Pacaya volcano built inside the collapse amphitheatre of “Old Pacaya”. The volcanic instability was assessed based on the variability of safety factor using deterministic, sensitivity, and probabilistic analysis considering the gravitational instability and the effects of external forces such as magma pressure and seismicity as potential triggering mechanisms of lateral collapse. The preliminary results from the analysis provide two insights: first, the least stable sector is on the south-western flank of the volcano; second, the lowest safety factor value suggests that the edifice is stable under gravity alone, and the external triggering mechanism can represent a likely destabilizing factor.
Resumo:
Seismic design of reinforced soil structures involves many uncertainties that arise from the backfill soil properties and tensile strength of the reinforcement which is not addressed in current design guidelines. This paper highlights the significance of variability in the internal stability assessment of reinforced soil structures. Reliability analysis is applied to estimate probability of failure and pseudo‐static approach has been used for the calculation of the tensile strength and length of the reinforcement needed to maintain the internal stability against tension and pullout failures. Logarithmic spiral failure surface has been considered in conjunction with the limit equilibrium method. Two modes of failure namely, tension failure and pullout failure have been considered. The influence of variations of the backfill soil friction angle, the tensile strength of reinforcement, horizontal seismic acceleration on the reliability index against tension failure and pullout failure of reinforced earth structure have been discussed.
Resumo:
This paper provides a numerical approach on achieving the limit equilibrium method for 3D slope stability analysis proposed in the theoretical part of the previous paper. Some programming techniques are presented to ensure the maneuverability of the method. Three examples are introduced to illustrate the use of this method. The results are given in detail such as the local factor of safety and local potential sliding direction for a slope. As the method is an extension of 2D Janbu's generalized procedure of slices (GPS), the results obtained by GPS for the longitudinal sections of a slope are also given for comparison with the 3D results. A practical landslide in Yunyang, the Three Gorges, of China, is also analyzed by the present method. Moreover, the proposed method has the advantages and disadvantages of GPS. The problem frequently encountered in calculation process is still about the convergency, especially in analyzing the stability of a cutting corner. Some advice on discretization is given to ensure convergence when the present method is used. However, the problem about convergency still needs to be further explored based on the rigorous theoretical background.
Resumo:
The critical excavation depth of a jointed rock slope is an important problem in rock engineering. This paper studies the critical excavation depth for two idealized jointed rock slopes by employing a face-to-face discrete element method (DEM). The DEM is based on the discontinuity analysis which can consider anisotropic and discontinuous deformations due to joints and their orientations. It uses four lump-points at each surface of rock blocks to describe their interactions. The relationship between the critical excavation depth D-s and the natural slope angle alpha, the joint inclination angle theta as well as the strength parameters of the joints c(r) ,phi(r) is analyzed, and the critical excavation depth obtained with this DEM and the limit equilibrium method (LEM) is compared. Furthermore, effects of joints on the failure modes are compared between DEM simulations and experimental observations. It is found that the DEM predicts a lower critical excavation depth than the LEM if the joint structures in the rock mass are not ignored.
Resumo:
The drawdown of reservoirs can significantly affect the stability of upstream slopes of earth dams. This is due to the removal of the balancing hydraulic forces acting on the dams and the undrained condition within the upstream slope soils. In such scenarios, the stability of the slopes can be influenced by a range of factors including drawdown rates, slope inclination and soil properties. This paper investigates the effects of drawdown rate, saturated hydraulic conductivity and unsaturated shear strength of dam materials on the stability of the upstream slope of an earth dam. In this study, the analysis of pore-water pressure changes within the upstream slope during reservoir drawdown was coupled with the slope stability analysis using the general limit equilibrium method. The results of the analysis suggested that a decrease in the reservoir water level caused the stability of the upstream slope to decrease. The dam embankment constructed with highly permeable soil was found to be more stable during drawdown scenarios, compared to others. Further, lower drawdown rates resulted in a higher safety factor for the upstream slope. Also, the safety factor of the slope calculated using saturated shear strength properties of the dam materials was slightly higher than that calculated using unsaturated shear strength properties. In general, for all the scenarios analysed, the lowest safety factor was found to be at the reservoir water level of about 2/3 of drawdown regime.
Resumo:
The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.
Resumo:
The paper focuses on the reliability-based design optimization of gravity wall bridge abutments when subjected to active condition during earthquakes. An analytical study considering the effect of uncertainties in the seismic analysis of bridge abutments is presented. Planar failure surface has been considered in conjunction with the pseudostatic limit equilibrium method for the calculation of the seismic active earth pressure. Analysis is conducted to evaluate the external stability of bridge abutments when subjected to earthquake loads. Reliability analysis is used to estimate the probability of failure in three modes of failure viz. sliding failure of the wall on its base, overturning failure about its toe (or eccentricity failure of the resultant force) and bearing failure of foundation soil below the base of wall. The properties of backfill and foundation soil below the base of abutment are treated as random variables. In addition, the uncertainties associated with characteristics of earthquake ground motions such as horizontal seismic acceleration and shear wave velocity propagating through backfill soil are considered. The optimum proportions of the abutment needed to maintain the stability are obtained against three modes of failure by targeting various component and system reliability indices. Studies have also been made to study the influence of various parameters on the seismic stability.
Resumo:
In this paper, an analytical study considering the effect of uncertainties in the seismic analysis of geosynthetic-reinforced soil (GRS) walls is presented. Using limit equilibrium method and assuming sliding wedge failure mechanism, analysis is conducted to evaluate the external stability of GRS walls when subjected to earthquake loads. Target reliability based approach is used to estimate the probability of failure in three modes of failure, viz., sliding, bearing, and eccentricity failure. The properties of reinforced backfill, retained backfill, foundation soil, and geosynthetic reinforcement are treated as random variables. In addition, the uncertainties associated with horizontal seismic acceleration and surcharge load acting on the wall are considered. The optimum length of reinforcement needed to maintain the stability against three modes of failure by targeting various component and system reliability indices is obtained. Studies have also been made to study the influence of various parameters on the seismic stability in three failure modes. The results are compared with those given by first-order second moment method and Monte Carlo simulation methods. In the illustrative example, external stability of the two walls, Gould and Valencia walls, subjected to Northridge earthquake is reexamined.
Resumo:
In this paper, an analytical study considering the effect of uncertainties in the seismic analysis of geosynthetic-reinforced soil (GRS) walls is presented. Using limit equilibrium method and assuming sliding wedge failure mechanism, analysis is conducted to evaluate the external stability of GRS walls when subjected to earthquake loads. Target reliability based approach is used to estimate the probability of failure in three modes of failure, viz., sliding, bearing, and eccentricity failure. The properties of reinforced backfill, retained backfill, foundation soil, and geosynthetic reinforcement are treated as random variables. In addition, the uncertainties associated with horizontal seismic acceleration and surcharge load acting on the wall are considered. The optimum length of reinforcement needed to maintain the stability against three modes of failure by targeting various component and system reliability indices is obtained. Studies have also been made to study the influence of various parameters on the seismic stability in three failure modes. The results are compared with those given by first-order second moment method and Monte Carlo simulation methods. In the illustrative example, external stability of the two walls, Gould and Valencia walls, subjected to Northridge earthquake is reexamined.
Resumo:
: In the presence of pseudo-static seismic forces, passive earth pressure coefficients behind retaining walls were generated using the limit equilibrium method of analysis for the negative wall friction angle case (i.e., the wall moves upwards relative to the backfill) with logarithmic spirals as rupture surfaces. Individual density, surcharge, and cohesion components were computed to obtain the total minimum seismic passive resistance in soils by adding together the individual minimum components. The effect of variation in wall batter angle, ground slope, wall friction angle, soil friction angle, and horizontal and vertical seismic accelerations on seismic passive earth pressures are considered in the analysis. The seismic passive earth pressure coefficients are found to be highly sensitive to the seismic acceleration coefficients both in the horizontal and the vertical directions. The results are presented in graphical and tabular formats.
Resumo:
Load and resistance factor design (LRFD) approach for the design of reinforced soil walls is presented to produce designs with consistent and uniform levels of risk for the whole range of design applications. The evaluation of load and resistance factors for the reinforced soil walls based on reliability theory is presented. A first order reliability method (FORM) is used to determine appropriate ranges for the values of the load and resistance factors. Using pseudo-static limit equilibrium method, analysis is conducted to evaluate the external stability of reinforced soil walls subjected to earthquake loading. The potential failure mechanisms considered in the analysis are sliding failure, eccentricity failure of resultant force (or overturning failure) and bearing capacity failure. The proposed procedure includes the variability associated with reinforced backfill, retained backfill, foundation soil, horizontal seismic acceleration and surcharge load acting on the wall. Partial factors needed to maintain the stability against three modes of failure by targeting component reliability index of 3.0 are obtained for various values of coefficients of variation (COV) of friction angle of backfill and foundation soil, distributed dead load surcharge, cohesion of the foundation soil and horizontal seismic acceleration. A comparative study between LRFD and allowable stress design (ASD) is also presented with a design example. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
边坡稳定性分析极限平衡法在求解安全系数时,需要对条块间内力引入假定条件或某些平衡条件在求解时得不到满足.分析这些不同的假设条件对于计算结果的影响,建立一个满足极限平衡原理和合理性条件的数值优化模型.引入载荷系数,利用载荷系数与安全系数之间的单调关系,将模型的求解转化为求解一系列线性规划问题,算法中不存在数值收敛问题,且可以求出安全系数的全局最优解.通过对模型各个约束条件的变化来模拟引入的假定条件,以此探讨各种假定条件或静力平衡条件的缺失对计算结果影响及某些常用方法引入的假定条件可能带来的误差.
Resumo:
This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.