981 resultados para Light-front field theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a real-time formulation of light-cone pp-wave string field theory at finite temperature is presented. This is achieved by developing the thermo field dynamics (TFD) formalism in a second quantized string scenario. The equilibrium thermodynamic quantities for a pp-wave ideal string gas are derived directly from expectation values on the second quantized string thermal vacuum. Also, we derive the real-time thermal pp-wave closed string propagator. In the flat space limit it is shown that this propagator can be written in terms of Theta functions, exactly as the zero temperature one. At the end, we show how superstrings interactions can be introduced, making this approach suitable to study the BMN dictionary at finite temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gauge fields in the light front are traditionally addressed via, the employment of an algebraic condition n·A = 0 in the Lagrangian density, where Aμ is the gauge field (Abelian or non-Abelian) and nμ is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n·A) (∂·A) = 0 with n·A = 0 = ∂·A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous nonlocal singularities of the type (k·n)-α where α = 1, 2. These singularities must be conveniently treated, and by convenient we mean not only mathemathically well-defined but physically sound and meaningful as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the light-cone gauge choice for Abelian and non-Abelian gauge fields, the vector boson propagator carries in it an additional spurious or unphysical pole intrinsic to the choice requiring a careful mathematical treatment. Research in this field over the years has shown us that mathematical consistency only is not enough to guarantee physically meaningful results. Whatever the prescription invoked to handle such an object, it has to preserve causality in the process. On the other hand, the covariantization technique is a well-suited one to tackle gauge-dependent poles in the Feynman integrals, dispensing the use of ad hoc prescriptions. In this work we show that the covariantization technique in the light-cone gauge is a direct consequence of the canonical quantization of the theory. © World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a covariant gauge we implicitly assume that the Green's function propagates information from one point of the space-time to another, so that the Green's function is responsible for the dynamics of the relativistic particle. In the light front form one would naively expect, that this feature would be preserved. In this manner, the fermionic field propagator can be split into a propagating piece and a non-propagating (contact) term. Since the latter (contact) one does not propagate information; and therefore, supposedly can be discarded with no harm to the field dynamics we wanted to know what would be the impact of dropping it off. To do that, we investigated its role in the Ward identity in the light front. Here we use the terminology Ward identity to identify the limiting case of photon's zero momentum transfer in the vertex from the more general Ward-Takahashi identity with nonzero momentum transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of light front coordinates in quantum field theories (QFT) always brought some problems and controversies. In this work we explore some aspects of its formalism with respect to the employment of dimensional regularization in the computation of the photon's self-energy at the one-loop level and how the fermion propagator has an important role in the outcoming results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the light-front vacuum is not trivial, and the Fock space for positive energy quanta solutions is not complete. As an example of this non triviality we have calculated the electromagnetic current for scalar bosons in the background field method were the covariance is restored through considering the complete Fock space of solutions.In this work we construct the electromagnetic current operator for a system composed of two free bosons. The technique employed to deduce these operators is through the definition of global propagators in the light front when a background electromagnetic field acts on one of the particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frame dependence of the pair-term contribution to the electromagnetic form factor of the pion is studied within the Light Front approach. A symmetric ansatz for the pion Bethe-Salpeter amplitude with a pseudo scalar coupling of the constituent to the pion field is used. In this model, the pair term vanishes for the Drell-Yan condition, while it is dominant for momentum transfer along the light-front direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1/N(c) expansion in QCD (with N(c) the number of colors) suggests using a potential from meson sector (e.g., Richardson) for baryons. For light quarks a sigma-field has to be introduced to ensure chiral symmetry breaking (chi-SB). It is found that nuclear matter properties can be used to pin down the chi-SB modeling. All masses, M(N), m-sigma, m-omega, are found to scale with density. The equations are solved self-consistently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we propose two Lagrange multipliers with distinct coefficients for the light-front gauge that leads to the complete (non-reduced) propagator. This is accomplished via (n · A)2 + (∂ · A) 2 terms in the Lagrangian density. These lead to a well-defined and exact though Lorentz non invariant light-front propagator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a short nontechnical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research work concerns the analysis of the foundations of Quantum Field Theory carried out from an educational perspective. The whole research has been driven by two questions: • How the concept of object changes when moving from classical to contemporary physics? • How are the concepts of field and interaction shaped and conceptualized within contemporary physics? What makes quantum field and interaction similar to and what makes them different from the classical ones? The whole work has been developed through several studies: 1. A study aimed to analyze the formal and conceptual structures characterizing the description of the continuous systems that remain invariant in the transition from classical to contemporary physics. 2. A study aimed to analyze the changes in the meanings of the concepts of field and interaction in the transition to quantum field theory. 3. A detailed study of the Klein-Gordon equation aimed at analyzing, in a case considered emblematic, some interpretative (conceptual and didactical) problems in the concept of field that the university textbooks do not address explicitly. 4. A study concerning the application of the “Discipline-Culture” Model elaborated by I. Galili to the analysis of the Klein-Gordon equation, in order to reconstruct the meanings of the equation from a cultural perspective. 5. A critical analysis, in the light of the results of the studies mentioned above, of the existing proposals for teaching basic concepts of Quantum Field Theory and particle physics at the secondary school level or in introductory physics university courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, baryonic acoustic oscillations, lookback time, and the Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.