996 resultados para Light acclimation
Resumo:
Elysia timida (Risso, 1818) colonizing the shallow waters of the Mar Menor Lagoon (Spain) exhibit a brown and a green morph. It was hypothesised that these morphs were the result of feeding preferentially on brown and green algae, respectively. E. timida and its potential food sources, Acetabularia acetabulum (Chlorophyta) and Halopteris filicina (Heterokontophyta) were collected by snorkelling during April 2010. Photosynthetic pigments were analysed by HPLC, photo-physiological parameters were estimated by PAM fluorometry and body colour was characterized by spectral reflectance. Digital photography was used to count the number and area of red spots (small red dots on the slug’s surface) on the parapodia of the 2 morphs. In the laboratory, green E. timida was fed with A. acetabulum cultured under 2 light treatments (high light, 600 µmol E m−2 s−1 and low light, 40 µmol E m−2 s−1), and digital photography was used to monitor colour alterations in E. timida. Spectral reflectance confirmed the colour differences, but both morphs showed a pigment composition similar to the green alga A. acetabulum and showed none of the pigments present in the brown alga H. filicina, neither immediately after collection of the slugs in situ, nor after the feeding experiment. A. acetabulum grown under high light intensity changed from green to brown colour and E. timida changed to brown colour when fed with high-light acclimated A. acetabulum. Thus, E. timida colour differences could not be attributed to feeding on different algae groups but was likely the result of feeding on A. acetabulum growing under different light intensities.
Resumo:
Light (20-450 μmol photons m-2 s-1), temperature (3-11°C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl
Resumo:
Photosynthetic characteristics in response to irradiance were analysed in 21 field and culture populations of thirteen freshwater red algal species applying two distinct techniques (chlorophyll fluorescence and oxygen evolution). Photosynthesis-irradiance (PI) curves indicated adaptations to low irradiances in all species analysed, essentially characterized by occurrence of photoinhibition, low values of the saturation parameter (I-k < 225 mu mol m(-2) s(-1)) and compensation irradiance (I-c < 20 mu mol m(-2) s(-1)) and relatively high values of the effective quantum yield of photosystem II (Delta F/F'(m) >= 45). These characteristics have been reported in freshwater red algae and were confirmed from data based on the two techniques, indicating they are typically shade-adapted plants. on the other hand, some species (e.g. Batrachospermum delicatulum) can tolerate high irradiances (up to 2400 mu mol m(-2) s(-1)), suggesting they have mechanisms that enable them to avoid photodarnage of the photosynthetic apparatus. One of these mechanisms is the increase in dissipation of excessive energy captured by reaction centres after exposure to continuous irradiance, as reflected by the non-photochemical quenching fluorescence parameter in dark/light induction curves. Photo-inhibition occurred in all algae tested by both techniques. Light acclimation was evident particularly in field populations, as revealed by lower values of the saturation parameter (Ik) and the compensation irradiance (I-c) and higher values of Delta F/F'(m) in algae under low irradiances (shaded or heavily shaded stream segments), and vice-versa. Forms living within the boundary layer (e.g. crusts), in a region of reduced current velocity, tended to be more shade-adapted than semi-erect plants (e.g. non-mucilaginous or mucilaginous filaments), as indicated by highest values of photosynthetic efficiency (alpha = 0.31) and effective quantum yield (Delta F/F'(m) = 0.88) under natural conditions. Higher photo- synthetic rates (P-max) for the same species or population were observed under culture than field conditions when measured with the oxygen evolution technique, whereas the opposite trend was observed using chlorophyll fluorescence. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
青藏高原东缘的亚高山针叶林是长江上游重要的生态屏障,经过近六十年的采伐后,取而代之的是大量人工种植的云杉纯林。目前,这些人工林已经表现出树种单一,结构层次简单等生态问题,其物种多样性及生态效益与同地带天然林相比差距较明显。如何丰富该地区物种多样性,完善人工林生态系统的生态功能是一个十分重要的课题。林下植物是人工林群落的重要组成部分,对维持群落的生物多样性及完善生态系统功能具有明显的作用。因此,研究该地区人工针叶林的林下植被对不同生境的适应性对于理解人工林生态系统物种多样性的形成和维持机制都具有重要的意义。 本文以青藏高原东部亚高山针叶林的主要森林类型----云杉人工林为研究对象,选择林下11种具有不同喜光特性的常见植物,分别设置人工林林冠下及成熟林窗为研究样地,通过对各种植物叶片形态与物质分配特征、叶片解剖学特征、叶片光合生理特性、植物自然分布特征等方面的比较分析,研究林下植物对不同光生境的适应策略及其适应能力,揭示不同物种对人工林生境的适应共性,为西南亚高山地区植被恢复及人工林的经营管理提供科学依据。具体研究结果如下: 在叶片形态和物质分配特征方面:在林窗光生境中,11种林下植物叶片比叶重(LMA)显著高于林下光生境的同种植物。同时,林窗下生长的植物叶片叶片厚度及栅栏细胞长度显著增加,这是影响叶片比叶重变化的直接原因。而多数植物叶重比在两种生境中无明显变化。说明在长期适应自然生境之后,植物可能更多地采取调节叶片组织细胞水平(即叶片功能细胞形态)及叶片器官水平(即单个叶片形态)特征的策略来适应各类生境,而非整株水平上的叶片总比重的增减。 在叶片解剖结构特征方面:多数阔叶物种栅栏组织厚度(PT)、栅栏组织厚度/海绵组织厚度(PT/ST)、栅栏细胞层数及近半数种的气孔密度(SD)在林窗生境中更大或更多,而叶片表皮细胞厚度(UET、LET)气孔长径(SL)及海绵组织厚度(ST)受两种生境影响不大。喜光特性相似的物种在生境适应策略上具有一定的趋同性。 在光合生理特征方面:在林窗生境中多数种植物的最大光合速率(Amax)、暗呼吸速率(Rd)及喜光植物光补偿点(LCP)显著或极显著高于林内生境同种植物。且在同一生境条件下,多数深度耐荫植物比喜光及轻度喜光植物有稍低的Rd和LCP。各植物在林内低光生境中具有更大的内禀光能转化效率,并在中午12:00~14:00之间光强最大的时刻发生了的最深程度的光抑制。多数种能通过调节自身某种光合素含量或色素之间的比例来适应不同的光生境,即通过增加叶绿素含量或降低Chla/b值来适应林内弱光生境,通过提高类胡萝卜素含量或单位叶绿素的类胡萝卜素含量降低强光带来的伤害。绝大多数物种并不采取调节叶片C、N含量的策略来适应不同的光生境。总之,植物部分光合参数(Amax、Rd、LCP)受生境的影响与其自身喜光特性有关,但另一些参数(Fv/Fm日变化、色素含量及比例、叶氮相对含量)受生境影响与其自身喜光特性无明显关联。 在表型可塑性方面:在叶片各表型参数中,器官水平及细胞水平的形态特征参数平均可塑性大于整株水平形态和物质分配特征参数可塑性;叶片光合组织的可塑性大于非光合组织可塑性;反映植物光合能力的参数可塑性大于叶片色素含量参数可塑性。植物叶片形态和物质分配、解剖学特征参数平均可塑性大小与其自身喜光特性基本吻合,即喜光种及轻度耐荫种各参数可塑性最高,深度耐荫种可塑性最小,而这种规律并未在光合生理参数的可塑性大小上体现出来。但是叶片形态和物质分配参数、光合生理参数的平均可塑性水平却大于叶片解剖学参数。 在植物自然分布特征方面:喜光物种云杉幼苗及歪头菜在林内生境中分布密度明显降低,深度耐荫种疏花槭却恰恰相反,更多数物种(7种植物)在两种生境中密度变化趋势不明显。从分布格局来看,7种植物在两种生境中均为聚集分布,但聚集强度为林窗>林内;少数物种桦叶荚迷、直穗小檗、冰川茶藨、黄背勾儿茶在林窗中为聚集型,在林内生境中的分布型发生改变而成为随机型,说明光生境的差异能影响到植物种群的分布特征。但这种影响程度与植物自身的喜光特性无关,同时与各物种叶片表型平均可塑性的大小也无明显关联。 The subalpine coniferous forest area in eastern Qinghai-Tibet Plateau is important ecology-barrier of upriver Yangtze. In past sixty years, those forests had been cut down and replaced with a lot of spruce plantations. At now, there are many ecology problems presenting to us such as singleness species, simple configuration, lower species diversity and ecological benefit than natural forests at the same belt. How to restore the species diversity and enhance the eco-function of the plantations is a very important issue. The understory plants are important part of plantation community, which improved the bio-diversity and eco-function distinctly of forests. So, it is very significance to study the adaptation of understory plants to different environment in plantation, and this study would helping us to understand how plantations to develop and remain their biodiversity. This study was conducted in a 60a spruce plantation in Miyaluo located in western Sichuan, China, and spruce plantation is major types of subalpine coniferous forest in eastern Qinghai-Tibet Plateau. In this paper, the leaf morphological and biomass-distributed characteristics, the anatomical characteristics, the photosynthetic characteristics and the distribution patterns characteristics of eleven different light-requirement understory species grown in two different environments (forest gaps and underneath close canopy) were studied and compared. The purpose of this study was to analyze the adaptation of this forest understory plants, to show up the commonness of these different light-requirement understory species in light acclimation, and to provide some scientific reference to manage and restore the vegetation of subalpine plantation of southwest China. The results were as follows: The leaf morphological and biomass-distributed characteristics: These eleven species in forest gaps had significantly higher dry weight per leaf area (LMA) than those under close canopy. The palisade parenchyma cells of the broad-leaved species in gaps were significantly longer than those grown under the canopy, which been a directed factor for the change of leaf mass per unit area (LMA) in different environment. But the leaf weight ratio (LWR) of most plants species were not evidently changed by the contrasted environments in our study. It was shown the morphological characteristics changing been adopted as a strategy of light acclimation for plants wasn’t on whole plant level (leaf weight ratio) but cellular level (the function cells morphological characteristics) and organic level (the leaf morphological and biomass-distributed characteristics) mostly. The leaf anatomical characteristics: Most broad-leaved plants in gaps increased palisade parenchyma thickness (PT), the palisade parenchyma cell layers and the ratio of palisade to spongy parenchyma (PT/ST). So did as almost about half species in this study in stomatal density (SD). No significant differences in thickness of leaf epidermal cells (UET, LET), stomatal length (SL) and spongy parenchyma (ST) between two environments of most species were observed. The results suggested that species with light-requirement approximately had convergent evolution on adaptation to light condition. The leaf photosynthetic characteristics: The dark respiration rate (Rd) of most plants species, the light compensation point (LCP) of light-demanding plants species in gaps were significantly increased than under close canopy in this study. In a same habitat, most deep-shade-tolerant plants had lower Rd and LCP than those light-demanding plants and slight-shade-tolerant plants. Each species has bigger inherent electron transport rate under close canopy than in gaps, and the greatest photoinhibition happened during 12 to 14 in the daytime. Most species could adapt different light environment by the way of changing their photosynthetic pigments content or the ratio of pigments content. For example, some plants under close canopy increased chlorophyll (Chl) or reduced the values of the ratio Chla/b to adapted the low light condition, some plants in gaps increased carotenoid (Car) or reduced the weight ratio CarChl to avoid been hurt in high light. For most plants, changing the content of C and N in leaf wasn’t a strategy of light acclimation. In conclusion, the variation of some leaf photosynthetic parameters in different light environment such as Fv/Fm, pigments, C and N in leaf related with the light-requirmnet of species, but the others such as Amax, Rd, LCP did not. The leaf plasticity indexes: Among those leaf plasticity indexes, the leaf morphological and biomass-distributed parameters on cellular and organic level were greater than on whole plant level for same species, and the photosynthetic parenchyma parameters were greater than non-photosynthetic parenchyma parameters in same leaf, and photosynthetic capability parameters were greater than photosynthetic pigments content parameters for same species. The average plasticity indexes of leaf morphological and biomass-distributed and anatomical parameters were accordant with plants’ light-requirement approximately: those light-demanding plants and slight-shade-tolerant plants had bigger plasticity indexes than deep-shade-tolerant plants. But this regular wasn’t observed in physiological plasticity indexes for most plants, though the average leaf plasticity indexes of leaf morphological and biomass-distributed, photosynthetic characteristics parameters was greater than the anatomical characteristics parameters. The distribution patterns characteristics: Oppositely to the deep-shade-tolerant specie Acer laxiflorum Pax., the density of light-demanding species Picea asperata Mast. and Vicia unijuga A. Br. in gaps was bigger than under close canopy. Each of the other species has the approximately density in two different environment. The spatial patterns of seven species were aggregated distribution in two environments, but the trend of aggregation of population under close canopy was decrease from in gaps. A few species such as Viburnum betulifoium Batal., Berberis dasystachya Maxim., Ribes glaciale Wall. and Berchemia flavescens Brongn. were aggregated distribution in gaps while random distribution under close canopy. It was shown that the difference between two light environments could affect the distribution pattern of plant population, and the effect didn’t relate with the light-requirement or plasticity indexes of species.
Resumo:
The population of Undaria pinnatifida in its ecologic niche sustains itself in high temperature summer in the form of vegetative gametophytes, the haploid stage in its heteromorphic life cycle. Gametogenesis initiates when seawater temperature drops below the threshold levels in autumn in the northern hemisphere. Given that the temperature may fall into the appropriate range for gametogenesis, the level of irradiance determines the final destiny of a gametophytic cell, either undergoing vegetative cell division or initiating gametogenesis. In elucidating how vegetatively propagated gametophytes cope with changes of irradiance in gametogenesis, we carried out a series of culture experiments and found that a direct exposure to irradiance as high as 270 mu mol photons m(-2) s(-1) was lethal to dim-light (7-10 mu mol photons m(-2) s(-1)) adapted male and female gametophytes. This lethal effect was linearly corelated with the exposure time. However, dim-light adapted vegetative gametophytes were shown to be able tolerate as high as 420 mu mol photons m(-2) s(-1) if the irradiance was steadily increased from dim light levels (7-10 mu mol photons m(-2) s(-1)) to 90, 180 and finally 420 mu mol photons m(-2) s(-1), respectively, at a minimum of 1-3 h intervals. Percentage of female gametophytic cells that turned into oogonia and were eventually fertilized was significantly higher if cultured at higher but not lethal irradiances. Findings of this investigation help to understand the dynamic changes of population size of sporophytic plants under different light climates at different site-specific ecologic niches. It may help to establish specific technical details of manipulation of light during mass production of seedlings by use of vegetatively propagated gametophytes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Die vorliegende Dissertation untersucht die biogeochemischen Vorgänge in der Vegetationsschicht (Bestand) und die Rückkopplungen zwischen physiologischen und physikalischen Umweltprozessen, die das Klima und die Chemie der unteren Atmosphäre beeinflussen. Ein besondere Schwerpunkt ist die Verwendung theoretischer Ansätze zur Quantifizierung des vertikalen Austauschs von Energie und Spurengasen (Vertikalfluss) unter besonderer Berücksichtigung der Wechselwirkungen der beteiligten Prozesse. Es wird ein differenziertes Mehrschicht-Modell der Vegetation hergeleitet, implementiert, für den amazonischen Regenwald parametrisiert und auf einen Standort in Rondonia (Südwest Amazonien) angewendet, welches die gekoppelten Gleichungen zur Energiebilanz der Oberfläche und CO2-Assimilation auf der Blattskala mit einer Lagrange-Beschreibung des Vertikaltransports auf der Bestandesskala kombiniert. Die hergeleiteten Parametrisierungen beinhalten die vertikale Dichteverteilung der Blattfläche, ein normalisiertes Profil der horizontalen Windgeschwindigkeit, die Lichtakklimatisierung der Photosynthesekapazität und den Austausch von CO2 und Wärme an der Bodenoberfläche. Desweiteren werden die Berechnungen zur Photosynthese, stomatären Leitfähigkeit und der Strahlungsabschwächung im Bestand mithilfe von Feldmessungen evaluiert. Das Teilmodell zum Vertikaltransport wird im Detail unter Verwendung von 222-Radon-Messungen evaluiert. Die ``Vorwärtslösung'' und der ``inverse Ansatz'' des Lagrangeschen Dispersionsmodells werden durch den Vergleich von beobachteten und vorhergesagten Konzentrationsprofilen bzw. Bodenflüssen bewertet. Ein neuer Ansatz wird hergeleitet, um die Unsicherheiten des inversen Ansatzes aus denjenigen des Eingabekonzentrationsprofils zu quantifizieren. Für nächtliche Bedingungen wird eine modifizierte Parametrisierung der Turbulenz vorgeschlagen, welche die freie Konvektion während der Nacht im unteren Bestand berücksichtigt und im Vergleich zu früheren Abschätzungen zu deutlich kürzeren Aufenthaltszeiten im Bestand führt. Die vorhergesagte Stratifizierung des Bestandes am Tage und in der Nacht steht im Einklang mit Beobachtungen in dichter Vegetation. Die Tagesgänge der vorhergesagten Flüsse und skalaren Profile von Temperatur, H2O, CO2, Isopren und O3 während der späten Regen- und Trockenzeit am Rondonia-Standort stimmen gut mit Beobachtungen überein. Die Ergebnisse weisen auf saisonale physiologische Änderungen hin, die sich durch höhere stomatäre Leitfähigkeiten bzw. niedrigere Photosyntheseraten während der Regen- und Trockenzeit manifestieren. Die beobachteten Depositionsgeschwindigkeiten für Ozon während der Regenzeit überschreiten diejenigen der Trockenzeit um 150-250%. Dies kann nicht durch realistische physiologische Änderungen erklärt werden, jedoch durch einen zusätzlichen cuticulären Aufnahmemechanismus, möglicherweise an feuchten Oberflächen. Der Vergleich von beobachteten und vorhergesagten Isoprenkonzentrationen im Bestand weist auf eine reduzierte Isoprenemissionskapazität schattenadaptierter Blätter und zusätzlich auf eine Isoprenaufnahme des Bodens hin, wodurch sich die globale Schätzung für den tropischen Regenwald um 30% reduzieren würde. In einer detaillierten Sensitivitätsstudie wird die VOC Emission von amazonischen Baumarten unter Verwendung eines neuronalen Ansatzes in Beziehung zu physiologischen und abiotischen Faktoren gesetzt. Die Güte einzelner Parameterkombinationen bezüglich der Vorhersage der VOC Emission wird mit den Vorhersagen eines Modells verglichen, das quasi als Standardemissionsalgorithmus für Isopren dient und Licht sowie Temperatur als Eingabeparameter verwendet. Der Standardalgorithmus und das neuronale Netz unter Verwendung von Licht und Temperatur als Eingabeparameter schneiden sehr gut bei einzelnen Datensätzen ab, scheitern jedoch bei der Vorhersage beobachteter VOC Emissionen, wenn Datensätze von verschiedenen Perioden (Regen/Trockenzeit), Blattentwicklungsstadien, oder gar unterschiedlichen Spezies zusammengeführt werden. Wenn dem Netzwerk Informationen über die Temperatur-Historie hinzugefügt werden, reduziert sich die nicht erklärte Varianz teilweise. Eine noch bessere Leistung wird jedoch mit physiologischen Parameterkombinationen erzielt. Dies verdeutlicht die starke Kopplung zwischen VOC Emission und Blattphysiologie.
Resumo:
Patterns of increasing leaf mass per area (LMA), area-based leaf nitrogen (Narea), and carbon isotope composition (δ13C) with increasing height in the canopy have been attributed to light gradients or hydraulic limitation in tall trees. Theoretical optimal distributions of LMA and Narea that scale with light maximize canopy photosynthesis; however, sub-optimal distributions are often observed due to hydraulic constraints on leaf development. Using observational, experimental, and modeling approaches, we investigated the response of leaf functional traits (LMA, density, thickness, and leaf nitrogen), leaf carbon isotope composition (δ13C), and cellular structure to light availability, height, and leaf water potential (Ψl) in an Acer saccharum forest to tease apart the influence of light and hydraulic limitations. LMA, leaf and palisade layer thickness, and leaf density were greater at greater light availability but similar heights, highlighting the strong control of light on leaf morphology and cellular structure. Experimental shading decreased both LMA and area-based leaf nitrogen (Narea) and revealed that LMA and Narea were more strongly correlated with height earlier in the growing season and with light later in the growing season. The supply of CO2 to leaves at higher heights appeared to be constrained by stomatal sensitivity to vapor pressure deficit (VPD) or midday leaf water potential, as indicated by increasing δ13C and VPD and decreasing midday Ψl with height. Model simulations showed that daily canopy photosynthesis was biased during the early growing season when seasonality was not accounted for, and was biased throughout the growing season when vertical gradients in LMA and Narea were not accounted for. Overall, our results suggest that leaves acclimate to light soon after leaf expansion, through an accumulation of leaf carbon, thickening of palisade layers and increased LMA, and reduction in stomatal sensitivity to Ψl or VPD. This period of light acclimation in leaves appears to optimize leaf function over time, despite height-related constraints early in the growing season. Our results imply that vertical gradients in leaf functional traits and leaf acclimation to light should be incorporated in canopy function models in order to refine estimates of canopy photosynthesis.
Resumo:
Net primary production (NPP) is commonly modeled as a function of chlorophyll concentration (Chl), even though it has been long recognized that variability in intracellular chlorophyll content from light acclimation and nutrient stress confounds the relationship between Chl and phytoplankton biomass. It was suggested previously that satellite estimates of backscattering can be related to phytoplankton carbon biomass (C) under conditions of a conserved particle size distribution or a relatively stable relationship between C and total particulate organic carbon. Together, C and Chl can be used to describe physiological state (through variations in Chl:C ratios) and NPP. Here, we fully develop the carbon-based productivity model (CbPM) to include information on the subsurface light field and nitracline depths to parameterize photoacclimation and nutrient stress throughout the water column. This depth-resolved approach produces profiles of biological properties (Chl, C, NPP) that are broadly consistent with observations. The CbPM is validated using regional in situ data sets of irradiance-derived products, phytoplankton chlorophyll: carbon ratios, and measured NPP rates. CbPM-based distributions of global NPP are significantly different in both space and time from previous Chl-based estimates because of the distinction between biomass and physiological influences on global Chl fields. The new model yields annual, areally integrated water column production of similar to 52 Pg C a(-1) for the global oceans.
Resumo:
Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 μmol m−2 s−1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.
Resumo:
A small fraction of the energy absorbed in the light reactions of photosynthesis is re-emitted as chlorophyll-a fluorescence. Chlorophyll-a fluorescence and photochemistry compete for excitation energy in photosystem II (PSII). Therefore, changes in the photochemical capacity can be detected through analysis of chlorophyll fluorescence. Chlorophyll fluorescence techniques have been widely used to follow the diurnal (fast), and the seasonal (slow) acclimation in the energy partitioning between photochemical and non-photochemical processes in PSII. Energy partitioning in PSII estimated through chlorophyll fluorescence can be used as a proxy of the plant physiological status, and measured at different spatial and temporal scales. However, a number of technical and theoretical limitations still limit the use of chlorophyll fluorescence data for the study of the acclimation of PSII. The aim of this Thesis was to study the diurnal and seasonal acclimation of PSII in field conditions through the development and testing of new chlorophyll fluorescence-based tools, overcoming these limitations. A new model capable of following the fast acclimation of PSII to rapid fluctuations in light intensity was developed. The model was used to study the rapid acclimation in the electron transport rate under fluctuating light. Additionally, new chlorophyll fluorescence parameters were developed for estimating the seasonal acclimation in the sustained rate constant of thermal energy dissipation and photochemistry. The parameters were used to quantitatively evaluate the effect of light and temperature on the seasonal acclimation of PSII. The results indicated that light environment not only affected the degree but also the kinetics of response of the acclimation to temperature, which was attributed to differences in the structural organization of PSII during seasonal acclimation. Furthermore, zeaxanthin-facilitated thermal dissipation appeared to be the main mechanisms modulating the fraction of absorbed energy being dissipated thermally during winter in field Scots pine. Finally, the integration between diurnal and seasonal acclimation mechanisms was studied using a recently developed instrument MONI-PAM (Walz GmbH, Germany) capable of continuously monitoring the energy partitioning in PSII.
Resumo:
Phytoplanktonic species acclimated to high light are known to show less photoinhibition. However, little has been documented on how cells grown under indoor conditions for decades without exposure to UV radiation (UVR, 280-400 nm) would respond differently to solar UVR compared to those in situ grown under natural solar radiation. Here, we have shown the comparative photosynthetic and growth responses to solar UVR in an indoor-(IS) and a naturally grown (WS) Skeletonema costatum type. In short-term experiment (<1 day), phi(PSII) and photosynthetic carbon fixation rate were more inhibited by UVR in the IS than in the WS cells. The rate of UVR-induced damages of PSII was faster and their repair was significantly slower in IS than in WS. Even under changing solar radiation simulated for vertical mixing, solar UVR-induced higher inhibition of photosynthetic rate in IS than in WS cells. During long-term (10 days) exposures to solar radiation, the specific growth rate was much lower in IS than WS at the beginning, then increased 3 days later to reach an equivalent level as that of WS. UVR-induced inhibition of photosynthetic carbon fixation in the IS was identical with that of WS at the end of the long-term exposure. The photosynthetic acclimation was not accompanied with increased contents of UV-absorbing compounds, indicating that repair processes for UVR-induced damages must have been accelerated or upgraded. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Synechocystis sp. PCC 6803 exposed to chill (5 degrees C)-light (100 mu mol photons m(-2) s(-1)) stress loses its ability to reinitiate growth. From a random insertion mutant library of Synechocystis sp. PCC 6803, a sll1242 mutant showing increased sensitivity to chill plus light was isolated. Mutant reconstruction and complementation with the wild-type gene confirmed the role of sll1242 in maintaining chill-light tolerance. At 15 degrees C, the autotrophic and mixotrophic growth of the mutant were both inhibited, paralleled by decreased photosynthetic activity. The expression of sll1242 was upregulated in Synechocystis sp. PCC 6803 after transfer from 30 to 15 degrees C at a photosynthetic photon flux density of 30 mu mol photons m(-2) S-1. sll1242, named ccr (cyanobacterial cold resistance gene)- 1, may be required for cold acclimation of cyanobacteria in light.
Resumo:
Through an acclimation period of 10 days, compared to white light, the maximal net photosynthetic rates were significantly higher for gametophytes of Undaria pinnatifida cultivated under blue light (400-500 nm), and were lower under red light (600-700 nm). Chlorophyll c and the carotenoid content of gametophytes were similar under blue light and red light but were much lower under white light. The growth rate of female gametophytes under blue light was higher than that under other lights, and the growth rate of male gametophytes showed little variation with respect to blue and white light. Male and female gametophytes were mixed together to form sporophytes under white, blue and red light. After approximately 5 days, 50% gametophytes became fertile under blue and white light, but remained vegetative under red light after 10 days.
Resumo:
Through an acclimation period of 10 days, compared to white light, the maximal net photosynthetic rates were significantly higher for gametophytes of Undaria pinnatifida cultivated under blue light (400-500 nm), and were lower under red light (600-700 nm). Chlorophyll c and the carotenoid content of gametophytes were similar under blue light and red light but were much lower under white light. The growth rate of female gametophytes under blue light was higher than that under other lights, and the growth rate of male gametophytes showed little variation with respect to blue and white light. Male and female gametophytes were mixed together to form sporophytes under white, blue and red light. After approximately 5 days, 50% gametophytes became fertile under blue and white light, but remained vegetative under red light after 10 days.