981 resultados para Ligation-independent Cloning
Resumo:
To analyze the effects of treatment approach on the outcomes of newborns (birth weight [BW] < 1,000 g) with patent ductus arteriosus (PDA), from the Brazilian Neonatal Research Network (BNRN) on: death, bronchopulmonary dysplasia (BPD), severe intraventricular hemorrhage (IVH III/IV), retinopathy of prematurity requiring surgical (ROPsur), necrotizing enterocolitis requiring surgery (NECsur), and death/BPD. This was a multicentric, cohort study, retrospective data collection, including newborns (BW < 1000 g) with gestational age (GA) < 33 weeks and echocardiographic diagnosis of PDA, from 16 neonatal units of the BNRN from January 1, 2010 to Dec 31, 2011. Newborns who died or were transferred until the third day of life, and those with presence of congenital malformation or infection were excluded. Groups: G1 - conservative approach (without treatment), G2 - pharmacologic (indomethacin or ibuprofen), G3 - surgical ligation (independent of previous treatment). Factors analyzed: antenatal corticosteroid, cesarean section, BW, GA, 5 min. Apgar score < 4, male gender, Score for Neonatal Acute Physiology Perinatal Extension (SNAPPE II), respiratory distress syndrome (RDS), late sepsis (LS), mechanical ventilation (MV), surfactant (< 2 h of life), and time of MV. death, O2 dependence at 36 weeks (BPD36wks), IVH III/IV, ROPsur, NECsur, and death/BPD36wks. Student's t-test, chi-squared test, or Fisher's exact test; Odds ratio (95% CI); logistic binary regression and backward stepwise multiple regression. Software: MedCalc (Medical Calculator) software, version 12.1.4.0. p-values < 0.05 were considered statistically significant. 1,097 newborns were selected and 494 newborns were included: G1 - 187 (37.8%), G2 - 205 (41.5%), and G3 - 102 (20.6%). The highest mortality was observed in G1 (51.3%) and the lowest in G3 (14.7%). The highest frequencies of BPD36wks (70.6%) and ROPsur were observed in G3 (23.5%). The lowest occurrence of death/BPD36wks occurred in G2 (58.0%). Pharmacological (OR 0.29; 95% CI: 0.14-0.62) and conservative (OR 0.34; 95% CI: 0.14-0.79) treatments were protective for the outcome death/BPD36wks. The conservative approach of PDA was associated to high mortality, the surgical approach to the occurrence of BPD36wks and ROPsur, and the pharmacological treatment was protective for the outcome death/BPD36wks.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To initiate our clinical trial for chemotherapy protection, I established the retroviral vector system for human MDR1 cDNA gene transfer. The human MDR1 cDNA continued to be expressed in the transduced bone marrow cells after four cohorts of serial transplants, 17 months after the initial transduction and transplant. In addition, we used this retroviral vector pVMDR1 to transduce human bone marrow and peripheral blood CD34$\sp+$ cells on stromal monolayer in the presence of hematopoietic growth factors. These data suggest that the retroviral vector pVMDR1 could modify hematopoietic precursor cells with a capacity for long-term self renewal. Thus, it may be possible to use the MDR1 retroviruses to confer chemotherapeutic protection on human normal hematopoietic precursor cells of ovarian and breast cancer patients in whom high doses of MDR drugs may be required to control the diseases.^ Another promising vector system is recombinant adeno-associated virus (rAAV) vector. An impediment to use rAAV vectors is that production of rAAV vectors for clinical use is extremely cumbersome and labor intensive. First I set up the rAAV vector system in our laboratory and then, I focused on studies related to the production of rAAV vectors for clinical use. By using a self-inactivating retroviral vector carrying a selection marker under the control of the CMV immediate early promoter and an AAV genome with the deletion of both ITRs, I have developed either a transient or a stable method to produce rAAV vectors. These methods involve infection only and can generate high-titer rAAV vectors (up to 2 x 10$\sp5$ cfu/ml of CVL) with much less work.^ Although recombinant adenoviral vectors hardly infect early hematopoietic precursor cells lacking $\alpha\sb v\beta\sb5$ or $\alpha\sb v\beta\sb3$ integrin on their surface, but efficiently infect other cells, we can use these properties of adenoviral vectors for bone marrow purging as well as for development of new viral vectors such as pseudotyped retroviral vectors and rAAV vectors. Replacement of self-inactivating retroviral vectors by recombinant adenoviral vectors will facilitate the above strategies for production of new viral vectors. In order to accomplish these goals, I developed a new method which is much more efficient than the current methods to construct adenoviral vectors. This method involves a cosmid vector system which is utilized to construct the full-length recombinant adenoviral vectors in vitro.^ First, I developed an efficient and flexible method for in vitro construction of the full-length recombinant adenoviral vectors in the cosmid vector system by use of a three-DNA fragment ligation. Then, this system was improved by use of a two-DNA fragment ligation. The cloning capacity of recombinant adenoviral vectors constructed by this method to develop recombinant adenoviral vectors depends on the efficiency of transfection only. No homologous recombination is required for development of infectious adenoviral vectors. Thus, the efficiency of generating the recombinant adenoviral vectors by the cosmid method reported here was much higher than that by the in vitro direct ligation method or the in vivo homologous recombination method reported before. This method of the in vitro construction of recombinant adenoviral vectors in the cosmid vector system may facilitate the development of adenoviral vector for human gene therapy. (Abstract shortened by UMI.) ^
Resumo:
We report here a new directional cDNA library construction method using an in vitro site-specific recombination reaction, based on the integrase–excisionase system of bacteriophage λ. Preliminary experiments revealed that in vitro recombinational cloning (RC) provided important advantages over conventional ligation-assisted cloning: it eliminated restriction digestion for directional cloning, generated low levels of chimeric clones, reduced size bias and, in our hands, gave a higher cloning efficiency than conventional ligation reactions. In a cDNA cloning experiment using an in vitro synthesized long poly(A)+ RNA (7.8 kb), the RC gave a higher full-length cDNA clone content and about 10 times more transformants than conventional ligation-assisted cloning. Furthermore, characterization of rat brain cDNA clones yielded by the RC method showed that the frequency of cDNA clones >2 kb having internal NotI sites was ∼6%, whereas these cDNAs could not be cloned at all or could be isolated only in a truncated form by conventional methods. Taken together, these results indicate that the RC method makes it possible to prepare cDNA libraries better representing the entire population of cDNAs, without sacrificing the simplicity of current conventional ligation-assisted methods.
Resumo:
CD40 and its ligand regulate pleiotropic biological responses, including cell proliferation, differentiation, and apoptosis. In many inflammatory lung diseases, tissue damage by environmental or endogenous oxidants plays a major role in disease pathogenesis. As the epithelial barrier is a major target for these oxidants, we postulated that CD40, the expression of which is increased in asthma, plays a role in the regulation of apoptosis of bronchial epithelial cells exposed to oxidants. Using 16HBE 14o- cells exposed to oxidant stress, we found that ligation of CD40 (induced by G28-5 monoclonal antibodies) enhanced cell survival and increased the number of cells in G2/M (interphase between DNA synthesis and mitosis) of the cell cycle. This was associated with NF-kappaB and activator protein-1 activation and increased expression of the inhibitor of apoptosis, c-IAP1. However, oxidant stress-induced apoptosis was found to be caspase- and calpain-independent implicating CD40 ligation as a regulator of caspase-independent cell death. This was confirmed by the demonstration that CD40 ligation prevented mitochondrial release and nuclear translocation of apoptosis inducing factor. In conclusion, we demonstrate a novel role for CD40 as a regulator of epithelial cell survival against oxidant stress. Furthermore, we have identified, for the first time, an endogenous inhibitory pathway of caspase-independent cell death.
Resumo:
A novel human cDNA encoding a cytosolic 62-kDa protein (p62) that binds to the Src homology 2 (SH2) domain of p56lck in a phosphotyrosine-independent manner has been cloned. The cDNA is composed of 2074 nucleotides with an open reading frame encoding 440 amino acids. Northern analysis suggests that p62 is expressed ubiquitously in all tissues examined. p62 is not homologous to any known protein in the data base. However, it contains a cysteine-rich region resembling a zinc finger motif, a potential G-protein-binding region, a PEST motif, and several potential phosphorylation sites. Using T7-epitope tagged p62 expression in HeLa cells, the expressed protein was shown to bind to the lck SH2 domain. Deletion of the N-terminal 50 amino acids abolished binding, but mutagenesis of the single tyrosine residue in this region had no effect on binding. Thus, the cloned cDNA indeed encodes the p62 protein, which is a phosphotyrosine-independent ligand for the lck SH2 domain. Its binding mechanism is unique with respect to binding modes of other known ligands for SH2 domains.
Resumo:
We cloned and sequenced the 8767-bp full-length cDNA for the chicken cation-independent mannose-6-phosphate receptor (CI-MPR), of interest because, unlike its mammalian homologs, it does not bind insulin-like growth factor II (IGF-II). The cDNA encodes a protein of 2470 aa that includes a putative signal sequence, an extracytoplasmic domain consisting of 15 homologous repeat sequences, a 23-residue transmembrane sequence, and a 161-residue cytoplasmic sequence. Overall, it shows 60% sequence identity with human and bovine CI-MPR homologs, and all but two of 122 cysteine residues are conserved. However, it shows much less homology in the N-terminal signal sequence, in repeat 11, which is proposed to contain the IGF-II-binding site in mammalian CI-MPR homologs, and in the 14-aa residue segment in the cytoplasmic sequence that has been proposed to mediate G-protein-coupled signal transduction in response to IGF-II binding by the human CI-MPR. Transient expression in COS-7 cells produced a functional CI-MPR which exhibited mannose-6-phosphate-inhibitable binding and mediated endocytosis of recombinant human beta-glucuronidase. Expression of the functional chicken CI-MPR in mice lacking the mammalian CI-MPR should clarify the controversy over the physiological role of the IGF-II-binding site in mammalian CI-MPR homologs.
Resumo:
The perivascular nerve network expresses a Ca(2+) receptor that is activated by high extracellular Ca(2+) concentrations and causes vasorelaxation in resistance arteries. We have verified the influence of perivascular nerve fibers on the Ca(2+)-induced relaxation in aortic rings. To test our hypothesis, either pre-contracted aortas isolated from rats after sensory denervation with capsaicin or aortic rings acutely denervated with phenol were stimulated to relax with increasing extracellular Ca(2+) concentration. We also studied the role of the endothelium on the Ca(2+)-induced relaxation, and we verified the participation of endothelial/nonendothelial nitric oxide and cyclooxygenise-arachidonic acid metabolites. Additionally, the role of the sarcoplasmic reticulum, K(+) channels and L-type Ca(2+) channels on the Ca(2+)-induced relaxation were evaluated. We have observed that the Ca(2+)-induced relaxation is completely nerve independent, and it is potentiated by endothelial nitric oxide (NO). In endothelium-denuded aortic rings, indomethacin and AH6809 (PGF(2 alpha) receptor antagonist) enhance the relaxing response to Ca(2+). This relaxation is inhibited by thapsigargin and verapamil, while was not altered by tetraethylammonium. In conclusion, we have shown that perivascular nervous fibers do not participate in the Ca(2+)-induced relaxation, which is potentiated by endothelial NO. In endothelium-denuded preparations, indomethacin and AH6809 enhance the relaxation induced by Ca(2+). The relaxing response to Call was impaired by verapamil and thapsigargin, revealing the importance of L-type Ca(2+) channels and sarcoplasmic reticulum in this response. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Myb-binding protein 1a (Mybbp1a) is a novel nuclear protein localized predominantly, but not exclusively, in nucleoli. Although initially isolated as a c-Myb interacting protein, Mybbp1a is expressed ubiquitously, associates with a number of different transcription factors, and may play a role in both RNA polymerase I- and II-mediated transcriptional regulation. However, its precise function remains unclear. In this study we show that Mybbp1a is a nucleocytoplasmic shuttling protein and investigate the mechanisms responsible for both nuclear import and export. The carboxyl terminus of Mybbp1a, which contains seven short basic amino acid repeat sequences, is responsible for both nuclear and nucleolar localization, and this activity can be transferred to a heterologous protein. Deletion mapping demonstrated that these repeat sequences appear to act incrementally, with successive deletions resulting in a corresponding increase in the proportion of protein localized in the cytoplasm. Glutathione S-transferase pulldown experiments showed that the nuclear receptor importin-alpha/beta mediates Mybbp1a nuclear import. Interspecies heterokaryons were used to demonstrate that Mybbp1a was capable of shuttling between the nucleus and the cytoplasm. Deletion analysis and in vivo export studies using a heterologous assay system identified several nuclear export sequences which facilitate Mybbp1a nuclear export of Mybbp1a by CRM1-dependent and -independent pathways. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
As a facultative aerobe with a high iron requirement and a highly active aerobic respiratory chain, Neisseria gonorrhoeae requires defence systems to respond to toxic oxygen species such as superoxide. It has been shown that supplementation of media with 100 muM Mn(II) considerably enhanced the resistance of this bacterium to oxidative killing by superoxide. This protection was not associated with the superoxide dismutase enzymes of N. gonorrhoeae. In contrast to previous studies, which suggested that some strains of N. gonorrhoeae might not contain a superoxide dismutase, we identified a sodB gene by genome analysis and confirmed its presence in all strains examined by Southern blotting, but found no evidence for sodA or sodC. A sodB mutant showed very similar susceptibility to superoxide killing to that of wild-type cells, indicating that the Fe-dependent SOD B did not have a major role in resistance to oxidative killing under the conditions tested. The absence of a sodA gene indicated that the Mn-dependent protection against oxidative killing was independent of Mn-dependent SOD A. As a sodB mutant also showed Mn-dependent resistance to oxidative killing, then it is concluded that this resistance is independent of superoxide dismutase enzymes. Resistance to oxidative killing was correlated with accumulation of Mn(II) by the bacterium. We hypothesize that this bacterium uses Mn(II) as a chemical quenching agent in a similar way to the already established process in Lactobacillus plantarum. A search for putative Mn(II) uptake systems identified an ABC cassette-type system (MntABC) with a periplasmic-binding protein (MntC). An mntC mutant was shown to have lowered accumulation of Mn(II) and was also highly susceptible to oxidative killing, even in the presence of added Mn(II). Taken together, these data show that N. gonorrhoeae possesses a Mn(II) uptake system that is critical for resistance to oxidative stress.
Resumo:
Classical cadherins mediate cell recognition and cohesion in many tissues of the body. It is increasingly apparent that dynamic cadherin contacts play key roles during morphogenesis and that a range of cell signals are activated as cells form contacts with one another. It has been difficult, however, to determine whether these signals represent direct downstream consequences of cadherin ligation or are juxtacrine signals that are activated when cadherin adhesion brings cell surfaces together but are not direct downstream targets of cadherin signaling. In this study, we used a functional cadherin ligand (hE/Fc) to directly test whether E-cadherin ligation regulates phosphatidylinositol 3-kinase (PI 3-kinase) and Rac signaling. We report that homophilic cadherin ligation recruits Rae to nascent adhesive contacts and specifically stimulates Rae signaling. Adhesion to hE/Fc also recruits PI 3-kinase to the cadherin complex, leading to the production of phosphatidylinositol 3,4,5-trisphosphate in nascent cadherin contacts. Rae activation involved an early phase, which was PI 3-kinase-independent, and a later amplification phase, which was inhibited by wortmannin. PI 3-kinase and Rae activity were necessary for productive adhesive contacts to form following initial homophilic ligation. We conclude that E-cadherin is a cellular receptor that is activated upon homophilic ligation to signal through PI 3-kinase and Rae. We propose that a key function of these cadherin-activated signals is to control adhesive contacts, probably via regulation of the actin cytoskeleton, which ultimately serves to mediate adhesive cell-cell recognition.
Resumo:
In this study we have characterized intra-patient length polymorphism in V4 by cloning and sequencing a C2-C4 fragment from HIV plasma RNA in patients at different stages of HIV disease. Clonal analysis of clade B, G, and CRF02 isolates during early infection shows extensive intra-patient V4 variability, due to the presence of indel-associated polymorphism. Indels, coupled to amino acid substitution events, affect the number and distribution of potential N-glycosylation sites, resulting in the coexistence, within the same patient, of V4 subsets, each characterized by different sizes, amino acid sequences, and potential N-glycosylation patterns. In contrast, V3 appears to be relatively homogeneous, with similar V3 associated to significantly different V4 within the same clinical specimen. Based on these data, we propose that during early chronic infection V4 is present as a highly divergent quasispecies, enabling the virus to adopt different conformational structures according to immune constrains and other selective pressures
Resumo:
Recent data showing expression of activating NK receptors (NKR) by conventional T lymphocytes raise the question of their role in the triggering of TCR-independent responses that could be damaging for the host. Transgenic mice expressing the activating receptor Ly49D/DAP12 offer the opportunity to better understand the relevance of ITAM signaling in the biology of T cells. In vitro experiments showed that Ly49D engagement on T lymphocytes by a cognate MHC class I ligand expressed by Chinese hamster ovary (CHO) cells or by specific Ab triggered cellular activation of both CD4 and CD8 populations with modulation of activation markers and cytokine production. The forced expression of the ITAM signaling chain DAP12 is mandatory for Ly49D-transgenic T cell activation. In addition, Ly49D stimulation induced T lymphocyte proliferation, which was much stronger for CD8 T cells. Phenotypic analysis of anti-Ly49D-stimulated CD8 T cells and their ability to produce high levels of IFN-gamma and to kill target cells indicate that Ly49D ligation generates effector cytotoxic CD8 T cells. Ly49D engagement by itself also triggered cytotoxic activity of activated CD8 T cells. Adoptive transfer experiments confirmed that Ly49D-transgenic CD8 T cells are able to control growth of CHO tumor cells or RMA cells transfected with Hm1-C4, the Ly49D ligand normally expressed by CHO. In conclusion, Ly49D engagement on T cells leads to T cell activation and to a full range of TCR-independent effector functions of CD8 T cells.
Inflammatory role of ASC in antigen-induced arthritis is independent of caspase-1, NALP-3, and IPAF.
Resumo:
Because IL-1beta plays an important role in inflammation in human and murine arthritis, we investigated the contribution of the inflammasome components ASC, NALP-3, IPAF, and caspase-1 to inflammatory arthritis. We first studied the phenotype of ASC-deficient and wild-type mice during Ag-induced arthritis (AIA). ASC(-/-) mice showed reduced severity of AIA, decreased levels of synovial IL-1beta, and diminished serum amyloid A levels. In contrast, mice deficient in NALP-3, IPAF, or caspase-1 did not show any alteration of joint inflammation, thus indicating that ASC associated effects on AIA are independent of the classical NALP-3 or IPAF inflammasomes. Because ASC is a ubiquitous cytoplasmic protein that has been implicated in multiple cellular processes, we explored other pathways through which ASC may modulate inflammation. Ag-specific proliferation of lymph node and spleen cells from ASC-deficient mice was significantly decreased in vitro, as was the production of IFN-gamma, whereas IL-10 production was enhanced. TCR ligation by anti-CD3 Abs in the presence or absence of anti-CD28 Abs induced a reduction in T cell proliferation in ASC(-/-) T cells compared with wild-type ones. In vivo lymph node cell proliferation was also significantly decreased in ASC(-/-) mice, but no effects on apoptosis were observed either in vitro or in vivo in these mice. In conclusion, these results strongly suggest that ASC modulates joint inflammation in AIA through its effects on cell-mediated immune responses but not via its implication in inflammasome formation.