922 resultados para Lift coefficient
Resumo:
The fluid force coefficients on a transversely oscillating cylinder are calculated by applying two- dimensional large eddy simulation method. Considering the ‘‘jump’’ phenomenon of the amplitude of lift coefficient is harmful to the security of the submarine slender structures, the characteristics of this ‘‘jump’’ are dissertated concretely. By comparing with experiment results, we establish a numerical model for predicting the jump of lift force on an oscillating cylinder, providing consultation for revising the hydrodynamic parameters and checking the fatigue life scale design of submarine slender cylindrical structures.
Resumo:
The use of adaptive wing/aerofoil designs is being considered as promising techniques in aeronautic/aerospace since they can reduce aircraft emissions, improve aerodynamic performance of manned or unmanned aircraft. The paper investigates the robust design and optimisation for one type of adaptive techniques; Active Flow Control (AFC) bump at transonic flow conditions on a Natural Laminar Flow (NLF) aerofoil designed to increase aerodynamic efficiency (especially high lift to drag ratio). The concept of using Shock Control Bump (SCB) is to control supersonic flow on the suction/pressure side of NLF aerofoil: RAE 5243 that leads to delaying shock occurrence or weakening its strength. Such AFC technique reduces total drag at transonic speeds due to reduction of wave drag. The location of Boundary Layer Transition (BLT) can influence the position the supersonic shock occurrence. The BLT position is an uncertainty in aerodynamic design due to the many factors, such as surface contamination or surface erosion. The paper studies the SCB shape design optimisation using robust Evolutionary Algorithms (EAs) with uncertainty in BLT positions. The optimisation method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. Two test cases are conducted; the first test assumes the BLT is at 45% of chord from the leading edge and the second test considers robust design optimisation for SCB at the variability of BLT positions and lift coefficient. Numerical result shows that the optimisation method coupled to uncertainty design techniques produces Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
Resumo:
In this paper two-dimensional (2-D) numerical investigation of flow past four square cylinders in an in-line square configuration are performed using the lattice Boltzmann method. The gap spacing g=s/d is set at 1, 3 and 6 and Reynolds number ranging from Re=60 to 175. We observed four distinct wake patterns: (i) a steady wake pattern (Re=60 and g=1) (ii) a stable shielding wake pattern (80≤Re≤175 and g=1) (iii) a wiggling shielding wake pattern (60≤Re≤175 and g=3) (iv) a vortex shedding wake pattern (60≤Re≤175 and g=6) At g=1, the Reynolds number is observed to have a strong effect on the wake patterns. It is also found that at g=1, the secondary cylinder interaction frequency significantly contributes for drag and lift coefficients signal. It is found that the primary vortex shedding frequency dominates the flow and the role of secondary cylinder interaction frequency almost vanish at g=6. It is observed that the jet between the gaps strongly influenced the wake interaction for different gap spacing and Reynolds number combination. To fully understand the wake transformations the details vorticity contour visualization, power spectra of lift coefficient signal and time signal analysis of drag and lift coefficients also presented in this paper.
Resumo:
Flow patterns and aerodynamic characteristics behind three side-by-side square cylinders has been found depending upon the unequal gap spacing (g1 = s1/d and g2 = s2/d) between the three cylinders and the Reynolds number (Re) using the Lattice Boltzmann method. The effect of Reynolds numbers on the flow behind three cylinders are numerically studied for 75 ≤ Re ≤ 175 and chosen unequal gap spacings such as (g1, g2) = (1.5, 1), (3, 4) and (7, 6). We also investigate the effect of g2 while keeping g1 fixed for Re = 150. It is found that a Reynolds number have a strong effect on the flow at small unequal gap spacing (g1, g2) = (1.5, 1.0). It is also found that the secondary cylinder interaction frequency significantly contributes for unequal gap spacing for all chosen Reynolds numbers. It is observed that at intermediate unequal gap spacing (g1, g2) = (3, 4) the primary vortex shedding frequency plays a major role and the effect of secondary cylinder interaction frequencies almost disappear. Some vortices merge near the exit and as a result small modulation found in drag and lift coefficients. This means that with the increase in the Reynolds numbers and unequal gap spacing shows weakens wakes interaction between the cylinders. At large unequal gap spacing (g1, g2) = (7, 6) the flow is fully periodic and no small modulation found in drag and lift coefficients signals. It is found that the jet flows for unequal gap spacing strongly influenced the wake interaction by varying the Reynolds number. These unequal gap spacing separate wake patterns for different Reynolds numbers: flip-flopping, in-phase and anti-phase modulation synchronized, in-phase and anti-phase synchronized. It is also observed that in case of equal gap spacing between the cylinders the effect of gap spacing is stronger than the Reynolds number. On the other hand, in case of unequal gap spacing between the cylinders the wake patterns strongly depends on both unequal gap spacing and Reynolds number. The vorticity contour visualization, time history analysis of drag and lift coefficients, power spectrum analysis of lift coefficient and force statistics are systematically discussed for all chosen unequal gap spacings and Reynolds numbers to fully understand this valuable and practical problem.
Resumo:
The performance of 23 kinds of waveriders, derived from different conical flowfields, is analyzed by the numerical computation under the conditions of fight speed of Mach 6, attack angle of 0° and flight altitude of 30 km. These results indicate that the performance is influenced by the shapes and the width to height ratios (W/H ) of generating cones. The geometrical parameter and the lift coefficient are proportional to W/H, while the drag coefficient and the lift to drag ratio (L/D ) have extreme values. Considering the base drag and the computation errors, the waverider with the highest L/D is cut from the elliptical cone’s flowfield (W/H = 1.5―1.618), and the configuration with the lowest drag can also be obtained at W/H = 1:1.5. Accordingly, good suggestions are proposed for practical design based on these computational results.
Resumo:
This paper presents the results of an investigation of wind tunnel wall interference in a two-dimensional wind tunnel at high Mach numbers. The results are presented in the form of curves of lift coefficient versus the ratio of model chord to tunnel height, as functions of Mach number and angle of attack. The investigation was carried out by the authors at the Guggenheim Aeronautical Laboratory of the California Institute of Technology during the school year 1944-45.
Tests were carried out on the NACA low drag airfoil section 65,1-012 at Mach numbers from .60 to .80, and angles of attack of from 1 to 3 degrees. Models were 1", 2", 4" and 6" chord, giving values of the chord to tunnel height ration of .1 to .6. Schlieren photographs were made of shock waves where they occurred.
Resumo:
The present study aims to provide insight into the parameters affecting practical laminar-flow-control suction power requirements for a commercial laminar-flying-wing transport aircraft. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient; hence, to a good approximation, the power penalty is given by the product of the optimal suction flow rate coefficient and the average skin pressure drop. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, if there are fewer pumps than chambers, the average pressure drop from the aerofoil surface to the pump collector ducts, rather than to the chambers, determines the power penalty. For the representative laminar-flying-wing aircraft parameters considered here, the minimum power associated with boundary-layer losses alone contributes some 80-90% of the total power requirement. © 2011 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
In order to disign an airfoil of which maximum lift coefficient (CL max) is not sensitive to location of forced top boundary layer transition. Taking maximizing mean value of CL max and minimizing standard deviation as biobjective, leading edge radius, manximum thickness and its location, maximum camber and its location as deterministic design variables, location of forced top boundary layer transition as stochastic variable, XFOIL as deterministic CFD solver, non-intrusive polynomial chaos as substitute of Monte Carlo method, we completed a robust airfoil design problem. Results demonstrate performance of initial airfoil is enhanced through reducing standard deviation of CL max. Besides, we also know maximum thickness has the most dominating effect on mean value of CL max, location of maximum thickness has the most dominating effect on standard deviation of CL max, maximum camber has a little effect on both mean value and standard deviation, and maximum camber is the only element of which increase can lead increase of mean value and standard deviation at the same time. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the earliest possible opportunity. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper presents an analytical mean-line design study for a repeating-stage, axial-flow Low Pressure (LP) turbine. The problem of how to measure blade loading is first addressed. The analysis demonstrates that the Zweifel coefficient [1] is not a reasonable gauge of blade loading because it inherently depends on the flow angles. A more appropriate coefficient based on blade circulation is proposed. Without a large set of turbine test data it is not possible to directly evaluate the accuracy of a particular loss correlation. The analysis therefore focuses on the efficiency trends with respect to flow coefficient, stage loading, lift coefficient and Reynolds number. Of the various loss correlations examined, those based on Ainley and Mathieson ([2], [3], [4]) do not produce realistic trends. The profile loss model of Coull and Hodson [5] and the secondary loss models of Craig and Cox [6] and Traupel [7] gave the most reasonable results. The analysis suggests that designs with the highest flow turning are the least sensitive to increases in blade loading. The increase in Reynolds number lapse with loading is also captured, achieving reasonable agreement with experiments. Copyright © 2011 by ASME.
Resumo:
In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the preliminary design stage. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper considers how blade loading should be measured, compares the performance of various loss correlations, and explores the impact of blade lift on performance and lapse rates. To these ends, an analytical design study is presented for a repeating-stage, axial-flow LP turbine. It is demonstrated that the long-established Zweifel lift coefficient (Zweifel, 1945, "The Spacing of Turbomachine Blading, Especially with Large Angular Deflection" Brown Boveri Rev., 32(1), pp. 436-444) is flawed because it does not account for the blade camber. As a result the Zweifel coefficient is only meaningful for a fixed set of flow angles and cannot be used as an absolute measure of blade loading. A lift coefficient based on circulation is instead proposed that accounts for the blade curvature and is independent of the flow angles. Various existing profile and secondary loss correlations are examined for their suitability to preliminary design. A largely qualitative comparison demonstrates that the loss correlations based on Ainley and Mathieson (Ainley and Mathieson, 1957, "A Method of Performance Estimation for Axial-Flow Turbines," ARC Reports and Memoranda No. 2974; Dunham and Came, 1970, "Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction," Trans. ASME: J. Eng. Gas Turbines Power, July, pp. 252-256; Kacker and Okapuu, 1982, "A Mean Line Performance Method for Axial Flow Turbine Efficiency," J. Eng. Power, 104, pp. 111-119). are not realistic, while the profile loss model of Coull and Hodson (Coull and Hodson, 2011, "Predicting the Profile Loss of High-Lift Low Pressure Turbines," J. Turbomach., 134(2), pp. 021002) and the secondary loss model of (Traupel, W, 1977, Thermische Turbomaschinen, Springer-Verlag, Berlin) are arguably the most reasonable. A quantitative comparison with multistage rig data indicates that, together, these methods over-predict lapse rates by around 30%, highlighting the need for improved loss models and a better understanding of the multistage environment. By examining the influence of blade lift across the Smith efficiency chart, the analysis demonstrates that designs with higher flow turning will tend to be less sensitive to increases in blade loading. © 2013 American Society of Mechanical Engineers.
Resumo:
The understanding of low Reynolds number aerodynamics is becoming increasingly prevalent with the recent surge in interest in advanced Micro-Air Vehicle (MAV) technology. Research in this area has been primarily stimulated by a military need for smaller, more versatile, autonomous, surveillance aircraft. The mechanism for providing the high lift coefficient required forMAV applications is thought to be largely influenced by the formation of a Leading Edge Vortex (LEV). This paper analyses experimentally, the influence of the LEV effect for a flat plate wing (AR = 4) under fast and slow pitch-up motions at Re =10,000 using a combination of dye flow visualisation and PIV measurements. It is found that a fast pitch over 1c shows a flow topology dominant LEV, while for a slow pitch case over 6c, the flow is largely separated. The development of the suction surface flow and the LEV was strongly correlated with the kinematics of the leading edge, suggesting that the effective local angle of incidence at the Leading Edge (LE) is of considerable significance in unsteady pitching motions. © 2013 by P.R.R.J Stevens.
Resumo:
In this study, a constant suction technique for controlling boundary layer separation at low Reynolds numbers was designed and tested. This was later implemented on small wind turbines. Small wind turbines need to operate in low wind speeds, that is, in low Reynolds number regimes – typically in the range 104–105. Airfoils are prone to boundary layer separation in these conditions, leading to a substantial drop in aerodynamic performance of the blades. Under these conditions turbines will have reduced energy output. This paper presents experimental results of applying surface-suction over the suction-surface of airfoils for controlling boundary layer separation. The Reynolds numbers for the experiments are kept in the range 8×104–5×105. The air over the surface of the airfoil is drawn into the airfoil through a slit. It is found that the lift coefficient of the airfoils increases and the drag reduces. Based on the improved airfoil characteristics, an analysis of increase in Coefficient of Power (CP), versus input power for a small wind turbine blade with constant suction is presented.
Resumo:
The great importance in selecting the profile of an aircraft wing concerns the fact that its relevance in the performance thereof; influencing this displacement costs (fuel consumption, flight level, for example), the conditions of flight safety (response in critical condition) of the plane. The aim of this study was to examine the aerodynamic parameters that affect some types of wing profile, based on wind tunnel testing, to determine the aerodynamic efficiency of each one of them. We compared three types of planforms, chosen from considerations about the characteristics of the aircraft model. One of them has a common setup, and very common in laboratory classes to be a sort of standard aerodynamic, it is a symmetrical profile. The second profile shows a conFiguration of the concave-convex type, the third is also a concave-convex profile, but with different implementation of the second, and finally, the fourth airfoil profile has a plano-convex. Thus, three different categories are covered in profile, showing the main points of relevance to their employment. To perform the experiment used a wind tunnel-type open circuit, where we analyzed the pressure distribution across the surface of each profile. Possession of the drag polar of each wing profile can be, from the theoretical basis of this work, the aerodynamic characteristics relate to the expected performance of the experimental aircraft, thus creating a selection model with guaranteed performance aerodynamics. It is believed that the philosophy used in this dissertation research validates the results, resulting in an experimental alternative for reliable implementation of aerodynamic testing in models of planforms
Resumo:
One of the current major concerns in engineering is the development of aircrafts that have low power consumption and high performance. So, airfoils that have a high value of Lift Coefficient and a low value for the Drag Coefficient, generating a High-Efficiency airfoil are studied and designed. When the value of the Efficiency increases, the aircraft s fuel consumption decreases, thus improving its performance. Therefore, this work aims to develop a tool for designing of airfoils from desired characteristics, as Lift and Drag coefficients and the maximum Efficiency, using an algorithm based on an Artificial Neural Network (ANN). For this, it was initially collected an aerodynamic characteristics database, with a total of 300 airfoils, from the software XFoil. Then, through the software MATLAB, several network architectures were trained, between modular and hierarchical, using the Back-propagation algorithm and the Momentum rule. For data analysis, was used the technique of cross- validation, evaluating the network that has the lowest value of Root Mean Square (RMS). In this case, the best result was obtained for a hierarchical architecture with two modules and one layer of hidden neurons. The airfoils developed for that network, in the regions of lower RMS, were compared with the same airfoils imported into the software XFoil
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)