922 resultados para Life-cycle cost model
Resumo:
Life cycle costing (LCC) practices are spreading from military and construction sectors to wider area of industries. Suppliers as well as customers are demanding comprehensive cost knowledge that includes all relevant cost elements through the life cycle of products. The problem of total cost visibility is being acknowledged and the performance of suppliers is evaluated not just by low acquisition costs of their products, but by total value provided through the life time of their offerings. The main purpose of this thesis is to provide better understanding of product cost structure to the case company. Moreover, comprehensive theoretical body serves as a guideline or methodology for further LCC process. Research includes the constructive analysis of LCC related concepts and features as well as overview of life cycle support services in manufacturing industry. The case study aims to review the existing LCC practices within the case company and provide suggestions for improvements. It includes identification of most relevant life cycle cost elements, development of cost breakdown structure and generic cost model for data collection. Moreover, certain cost-effective suggestions are provided as well. This research should support decision making processes, assessment of economic viability of products, financial planning, sales and other processes within the case company.
Resumo:
There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.
Resumo:
Recent developments in automation, robotics and artificial intelligence have given a push to a wider usage of these technologies in recent years, and nowadays, driverless transport systems are already state-of-the-art on certain legs of transportation. This has given a push for the maritime industry to join the advancement. The case organisation, AAWA initiative, is a joint industry-academia research consortium with the objective of developing readiness for the first commercial autonomous solutions, exploiting state-of-the-art autonomous and remote technology. The initiative develops both autonomous and remote operation technology for navigation, machinery, and all on-board operating systems. The aim of this study is to develop a model with which to estimate and forecast the operational costs, and thus enable comparisons between manned and autonomous cargo vessels. The building process of the model is also described and discussed. Furthermore, the model’s aim is to track and identify the critical success factors of the chosen ship design, and to enable monitoring and tracking of the incurred operational costs as the life cycle of the vessel progresses. The study adopts the constructive research approach, as the aim is to develop a construct to meet the needs of a case organisation. Data has been collected through discussions and meeting with consortium members and researchers, as well as through written and internal communications material. The model itself is built using activity-based life cycle costing, which enables both realistic cost estimation and forecasting, as well as the identification of critical success factors due to the process-orientation adopted from activity-based costing and the statistical nature of Monte Carlo simulation techniques. As the model was able to meet the multiple aims set for it, and the case organisation was satisfied with it, it could be argued that activity-based life cycle costing is the method with which to conduct cost estimation and forecasting in the case of autonomous cargo vessels. The model was able to perform the cost analysis and forecasting, as well as to trace the critical success factors. Later on, it also enabled, albeit hypothetically, monitoring and tracking of the incurred costs. By collecting costs this way, it was argued that the activity-based LCC model is able facilitate learning from and continuous improvement of the autonomous vessel. As with the building process of the model, an individual approach was chosen, while still using the implementation and model building steps presented in existing literature. This was due to two factors: the nature of the model and – perhaps even more importantly – the nature of the case organisation. Furthermore, the loosely organised network structure means that knowing the case organisation and its aims is of great importance when conducting a constructive research.
Resumo:
The cost of a road construction over its service life is a function of design, quality of construction as well as maintenance strategies and operations. An optimal life-cycle cost for a road requires evaluations of the above mentioned components. Unfortunately, road designers often neglect a very important aspect, namely, the possibility to perform future maintenance activities. Focus is mainly directed towards other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This doctoral thesis presents the results of a research project aimed to increase consideration of road maintenance aspects in the planning and design process. The following subgoals were established: Identify the obstacles that prevent adequate consideration of future maintenance during the road planning and design process; and Examine optimisation of life-cycle costs as an approach towards increased efficiency during the road planning and design process. The research project started with a literature review aimed at evaluating the extent to which maintenance aspects are considered during road planning and design as an improvement potential for maintenance efficiency. Efforts made by road authorities to increase efficiency, especially maintenance efficiency, were evaluated. The results indicated that all the evaluated efforts had one thing in common, namely ignorance of the interrelationship between geometrical road design and maintenance as an effective tool to increase maintenance efficiency. Focus has mainly been on improving operating practises and maintenance procedures. This fact might also explain why some efforts to increase maintenance efficiency have been less successful. An investigation was conducted to identify the problems and difficulties, which obstruct due consideration of maintainability during the road planning and design process. A method called “Change Analysis” was used to analyse data collected during interviews with experts in road design and maintenance. The study indicated a complex combination of problems which result in inadequate consideration of maintenance aspects when planning and designing roads. The identified problems were classified into six categories: insufficient consulting, insufficient knowledge, regulations and specifications without consideration of maintenance aspects, insufficient planning and design activities, inadequate organisation and demands from other authorities. Several urgent needs for changes to eliminate these problems were identified. One of the problems identified in the above mentioned study as an obstacle for due consideration of maintenance aspects during road design was the absence of a model for calculating life-cycle costs for roads. Because of this lack of knowledge, the research project focused on implementing a new approach for calculating and analysing life-cycle costs for roads with emphasis on the relationship between road design and road maintainability. Road barriers were chosen as an example. The ambition is to develop this approach to cover other road components at a later stage. A study was conducted to quantify repair rates for barriers and associated repair costs as one of the major maintenance costs for road barriers. A method called “Case Study Research Method” was used to analyse the effect of several factors on barrier repairs costs, such as barrier type, road type, posted speed and seasonal effect. The analyses were based on documented data associated with 1625 repairs conducted in four different geographical regions in Sweden during 2006. A model for calculation of average repair costs per vehicle kilometres was created. Significant differences in the barrier repair costs were found between the studied barrier types. In another study, the injuries associated with road barrier collisions and the corresponding influencing factors were analysed. The analyses in this study were based on documented data from actual barrier collisions between 2005 and 2008 in Sweden. The result was used to calculate the cost for injuries associated with barrier collisions as a part of the socio-economic cost for road barriers. The results showed significant differences in the number of injuries associated with collisions with different barrier types. To calculate and analyse life-cycle costs for road barriers a new approach was developed based on a method called “Activity-based Life-cycle Costing”. By modelling uncertainties, the presented approach gives a possibility to identify and analyse factors crucial for optimising life-cycle costs. The study showed a great potential to increase road maintenance efficiency through road design. It also showed that road components with low investment costs might not be the best choice when including maintenance and socio-economic aspects. The difficulties and problems faced during the collection of data for calculating life-cycle costs for road barriers indicated a great need for improving current data collecting and archiving procedures. The research focused on Swedish road planning and design. However, the conclusions can be applied to other Nordic countries, where weather conditions and road design practices are similar. The general methodological approaches used in this research project may be applied also to other studies.
Resumo:
The evaporators of sugar plants in Brazil have used carbon steel intensively because of it is, a low priced material, which possesses inferior corrosion resistance. The materials more indicated for the substitution of carbon steel are stainless steels, however they are considered expensive. The environmental and financial performances of evaporator pipes constructed with carbon steel and with types AISI 304 444 and 439 stainless steel were evaluated. For the environmental evaluation, the Life Cycle Assessment (LCA) methodology Was used and it, revealed that stainless steel is more environmentally efficient than carbon steel. The life cycle costing (LCC) technique was the tool chosen for the financial evaluation and it showed that stainless steel is a better investment option compared to carbon steel. The results also indicate that LCA and LCC methodologies must be used together Therefore, it can he seen that safer environmental products can come to be the most profitable investment options.
Resumo:
The present work is included in the context of the assessment of sustainability in the construction field and is aimed at estimating and analyzing life cycle cost of the existing reinforced concrete bridge “Viadotto delle Capre” during its entire life. This was accomplished by a comprehensive data collection and results evaluation. In detail, the economic analysis of the project is performed. The work has investigated possible design alternatives for maintenance/rehabilitation and end-of-life operations, when structural, functional, economic and also environmental requirements have to be fulfilled. In detail, the economic impact of different design options for the given reinforced concrete bridge have been assessed, whereupon the most economically, structurally and environmentally efficient scenario was chosen. The Integrated Life-Cycle Analysis procedure and Environmental Impact Assessment were also discussed in this work. The scope of this thesis is to illustrate that Life Cycle Cost analysis as part of Life Cycle Assessment approach could be effectively used to drive the design and management strategy of new and existing structures. The final objective of this contribution is to show how an economic analysis can influence decision-making in the definition of the most sustainable design alternatives. The designers can monitor the economic impact of different design strategies in order to identify the most appropriate option.
Resumo:
Mode of access: Internet.
Resumo:
"December 1985."
Resumo:
Federal Railroad Administration, Office of Safety, Washington, D.C.
Resumo:
Energy price is related to more than half of the total life cycle cost of asphalt pavements. Furthermore, the fluctuation related to price of energy has been much higher than the general inflation and interest rate. This makes the energy price inflation an important variable that should be addressed when performing life cycle cost (LCC) studies re- garding asphalt pavements. The present value of future costs is highly sensitive to the selected discount rate. Therefore, the choice of the discount rate is the most critical element in LCC analysis during the life time of a project. The objective of the paper is to present a discount rate for asphalt pavement projects as a function of interest rate, general inflation and energy price inflation. The discount rate is defined based on the portion of the energy related costs during the life time of the pavement. Consequently, it can reflect the financial risks related to the energy price in asphalt pavement projects. It is suggested that a discount rate sensitivity analysis for asphalt pavements in Sweden should range between –20 and 30%.
Resumo:
Power distribution systems are susceptible to extreme damage from natural hazards especially hurricanes. Hurricane winds can knock down distribution poles thereby causing damage to the system and power outages which can result in millions of dollars in lost revenue and restoration costs. Timber has been the dominant material used to support overhead lines in distribution systems. Recently however, utility companies have been searching for a cost-effective alternative to timber poles due to environmental concerns, durability, high cost of maintenance and need for improved aesthetics. Steel has emerged as a viable alternative to timber due to its advantages such as relatively lower maintenance cost, light weight, consistent performance, and invulnerability to wood-pecker attacks. Both timber and steel poles are prone to deterioration over time due to decay in the timber and corrosion of the steel. This research proposes a framework for conducting fragility analysis of timber and steel poles subjected to hurricane winds considering deterioration of the poles over time. Monte Carlo simulation was used to develop the fragility curves considering uncertainties in strength, geometry and wind loads. A framework for life-cycle cost analysis is also proposed to compare the steel and timber poles. The results show that steel poles can have superior reliability and lower life-cycle cost compared to timber poles, which makes them suitable substitutes.
Resumo:
The importance of industrial maintenance has been emphasized during the last decades; it is no longer a mere cost item, but one of the mainstays of business. Market conditions have worsened lately, investments in production assets have decreased, and at the same time competition has changed from taking place between companies to competition between networks. Companies have focused on their core functions and outsourced support services, like maintenance, above all to decrease costs. This new phenomenon has led to increasing formation of business networks. As a result, a growing need for new kinds of tools for managing these networks effectively has arisen. Maintenance costs are usually a notable part of the life-cycle costs of an item, and it is important to be able to plan the future maintenance operations for the strategic period of the company or for the whole life-cycle period of the item. This thesis introduces an itemlevel life-cycle model (LCM) for industrial maintenance networks. The term item is used as a common definition for a part, a component, a piece of equipment etc. The constructed LCM is a working tool for a maintenance network (consisting of customer companies that buy maintenance services and various supplier companies). Each network member is able to input their own cost and profit data related to the maintenance services of one item. As a result, the model calculates the net present values of maintenance costs and profits and presents them from the points of view of all the network members. The thesis indicates that previous LCMs for calculating maintenance costs have often been very case-specific, suitable only for the item in question, and they have also been constructed for the needs of a single company, without the network perspective. The developed LCM is a proper tool for the decision making of maintenance services in the network environment; it enables analysing the past and making scenarios for the future, and offers choices between alternative maintenance operations. The LCM is also suitable for small companies in building active networks to offer outsourcing services for large companies. The research introduces also a five-step constructing process for designing a life-cycle costing model in the network environment. This five-step designing process defines model components and structure throughout the iteration and exploitation of user feedback. The same method can be followed to develop other models. The thesis contributes to the literature of value and value elements of maintenance services. It examines the value of maintenance services from the perspective of different maintenance network members and presents established value element lists for the customer and the service provider. These value element lists enable making value visible in the maintenance operations of a networked business. The LCM added with value thinking promotes the notion of maintenance from a “cost maker” towards a “value creator”.