936 resultados para Life cycle sustainability assessment
Resumo:
In the European context of upgrading the housing stock energy performance, multiple barriers hinder the wide uptake of sustainable retrofitting practices. Moreover, some of these may imply negative effects often disregarded. Policy makers need to identify how to increase and improve retrofitting practices from the comprehensive point of view of sustainability. None of the existing assessment tools addresses all the issues relevant for sustainable development in a local situation from a life cycle perspective. Life cycle sustainability assessment methodology, or LCSA, analyzes environmental and socioeconomic impacts. The environmental part is quite developed, but the socioeconomic aspect is still challenging. This work proposes socioeconomic criteria to be included in a LCSA to assess retrofitting works in the specific context of Brussels-Capital Region. LCSA feasibility and challenging methodology aspects are discussed.
Resumo:
The Agenda 2030 contains 17 integrated Sustainable Development Goals (SDGs). SDG 12 for Sustainable Consumption and Production (SCP) promotes the efficient use of resources through a systemic change that decouples economic growth from environmental degradation. The Food Systems (FS) pillar in SDG 12 entails paramount relevance due to its interconnection to many other SDGs, and even when being a crucial world food supplier, the Latin American and Caribbean (LAC) Region struggles with environmental and social externalities, low investment in agriculture, inequity, food insecurity, poverty, and migration. Life Cycle Thinking (LCT) was regarded as a pertinent approach to identify hotspots and trade-offs, and support decision-making process to aid LAC Region countries as Costa Rica to diagnose sustainability and overcome certain challenges. This thesis aimed to ‘evaluate the sustainability of selected products from food supply chains in Costa Rica, to provide inputs for further sustainable decision-making, through the application of Life Cycle Thinking’. To do this, Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social Life Cycle Assessment (S-LCA) evaluated the sustainability of food-waste-to-energy alternatives, and the production of green coffee, raw milk and leafy vegetables, and identified environmental, social and cost hotspots. This approach also proved to be a useful component of decision-making and policy-making processes together with other methods. LCT scientific literature led by LAC or Costa Rican researchers is still scarce; therefore, this research contributed to improve capacities in the use of LCT in this context, while offering potential replicability of the developed frameworks in similar cases. Main limitations related to the representativeness and availability of primary data; however, future research and extension activities are foreseen to increase local data availability, capacity building, and the discussion of potential integration through Life Cycle Sustainability Assessment (LCSA).
Resumo:
Projeto de investigação integrado de International Master in Sustainable Built Environment
Resumo:
Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers' or consumers' health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/ SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.
Resumo:
The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.
Resumo:
Life Cycle Assessment (LCA) is a chain-oriented tool to evaluate the environment performance of products focussing on the entire life cycle of these products: from the extraction of resources, via manufacturing and use, to the final processing of the disposed products. Through all these stages consumption of resources and pollutant releases to air, water, soil are identified and quantified in Life Cycle Inventory (LCI) analysis. Subsequently to the LCI phase follows the Life Cycle Impact Assessment (LCIA) phase; that has the purpose to convert resource consumptions and pollutant releases in environmental impacts. The LCIA aims to model and to evaluate environmental issues, called impact categories. Several reports emphasises the importance of LCA in the field of ENMs. The ENMs offer enormous potential for the development of new products and application. There are however unanswered questions about the impacts of ENMs on human health and the environment. In the last decade the increasing production, use and consumption of nanoproducts, with a consequent release into the environment, has accentuated the obligation to ensure that potential risks are adequately understood to protect both human health and environment. Due to its holistic and comprehensive assessment, LCA is an essential tool evaluate, understand and manage the environmental and health effects of nanotechnology. The evaluation of health and environmental impacts of nanotechnologies, throughout the whole of their life-cycle by using LCA methodology. This is due to the lack of knowledge in relation to risk assessment. In fact, to date, the knowledge on human and environmental exposure to nanomaterials, such ENPs is limited. This bottleneck is reflected into LCA where characterisation models and consequently characterisation factors for ENPs are missed. The PhD project aims to assess limitations and challenges of the freshwater aquatic ecotoxicity potential evaluation in LCIA phase for ENPs and in particular nanoparticles as n-TiO2.
Resumo:
abstract to be added by authors
Resumo:
Based on the presentation and discussion at the 3rd Winter School on Technology Assessment, December 2012, Universidade Nova de Lisboa (Portugal), Caparica Campus, PhD programme on Technology Assessment
Resumo:
Purpose Achieving sustainability by rethinking products, services and strategies is an enormous challenge currently laid upon the economic sector, in which materials selection plays a critical role. In this context, the present work describes an environmental and economic life cycle analysis of a structural product, comparing two possible material alternatives. The product chosen is a storage tank, presently manufactured in stainless steel (SST) or in a glass fibre reinforced polymer composite (CST). The overall goal of the study is to identify environmental and economic strong and weak points related to the life cycle of the two material alternatives. The consequential win-win or trade-off situations will be identified via a Life Cycle Assessment/Life Cycle Costing (LCA/LCC) integrated model. Methods The LCA/LCC integrated model used consists in applying the LCA methodology to the product system, incorporating, in parallel, its results into the LCC study, namely those of the Life Cycle Inventory (LCI) and the Life Cycle Impact Assessment (LCIA). Results In both the SST and CST systems the most significant life cycle phase is the raw materials production, in which the most significant environmental burdens correspond to the Fossil fuels and Respiratory inorganics categories. The LCA/LCC integrated analysis shows that the CST has globally a preferable environmental and economic profile, as its impacts are lower than those of the SST in all life cycle stages. Both the internal and external costs are lower, the former resulting mainly from the composite material being significantly less expensive than stainless steel. This therefore represents a full win-win situation. As a consequence, the study clearly indicates that using a thermoset composite material to manufacture storage tanks is environmentally and economically desirable. However, it was also evident that the environmental performance of the CST could be improved by altering its End-of-Life stage. Conclusions The results of the present work provide enlightening insights into the synergies between the environmental and the economic performance of a structural product made with alternative materials. Further, they provide conclusive evidence to support the integration of environmental and economic life cycle analysis in the product development processes of a manufacturing company, or in some cases even in its procurement practices.
Resumo:
Life cycle analysis (LCA) is a comprehensive method for assessing the environmental impact of a product or an activity over its entire life cycle. The purpose of conducting LCA studies varies from one application to another. Different applications use LCA for different purposes. In general, the main aim of using LCA is to reduce the environmental impact of products through guiding the decision making process towards more sustainable solutions. The most critical phase in an LCA study is the Life Cycle Impact Assessment (LCIA) where the life cycle inventory (LCI) results of the considered substances related to the study of a certain system are transformed into understandable impact categories that represent the impact on the environment. In this research work, a general structure clarifying the steps that shall be followed ir order to conduct an LCA study effectively is presented. These steps are based on the ISO 14040 standard framework. In addition, a survey is done on the most widely used LCIA methodologies. Recommendations about possible developments and suggetions for further research work regarding the use of LCA and LCIA methodologies are discussed as well.
Resumo:
Taloudellisen laskennan yhdistäminen elinkaariarviointiin (LCA) on alkanut kiinnostaa eri teollisuuden aloja maailmanlaajuisesti viime aikoina. Useat LCA-tietokoneohjelmat sisältävät kustannuslaskentaominaisuuksia ja yksittäiset projektit ovat yhdistäneet ympäristö- ja talouslaskentamenetelmiä. Tässä projektissa tutkitaan näiden yhdistelmien soveltuvuutta suomalaiselle sellu- ja paperiteollisuudelle, sekä kustannuslaskentaominaisuuden lisäämistä KCL:n LCA-ohjelmaan, KCL-ECO 3.0:aan. Kaikki tutkimuksen aikana löytyneet menetelmät, jotka yhdistävät LCA:n ja taloudellista laskentaa, on esitelty tässä työssä. Monet näistä käyttävät elinkaarikustannusarviointia (LCCA). Periaatteessa elinkaari määritellään eri tavalla LCCA:ssa ja LCA:ssa, mikä luo haasteita näiden menetelmien yhdistämiselle. Sopiva elinkaari tulee määritellä laskennan tavoitteiden mukaisesti. Työssä esitellään suositusmenetelmä, joka lähtee suomalaisen sellu- ja paperiteollisuuden erikoispiirteistä. Perusvaatimuksena on yhteensopivuus tavanomaisesti paperin LCA:ssa käytetyn elinkaaren kanssa. Menetelmän yhdistäminen KCL-ECO 3.0:aan on käsitelty yksityiskohtaisesti.
Resumo:
This study analyzes the environmental performance of the Municipal Solid Waste Management System (MSWMS) of Piedade, São Paulo, from a systemic perspective. A life cycle assessment (LCA) technique was applied according to an attributional approach to evaluate both the current operational situation and different prospective scenarios, which were devised based on the application of targets for recycling dry and wet waste suggested by the pre-draft version of the Brazilian Plan for Solid Waste. The life cycle impact assessment method EcoIndicator 99, in association with normalization and weighting procedures, was used to conduct the analysis. It was observed that the adoption of goals of 30%, 50% and 70% for recovering of the recyclable dry waste, resulted in improvement of the environmental performance of the waste management system under analysis, respectively of 10%, 15% and 20%. It was also possible to detect an evolution in the order of 54% in reducing impacts resulting from the adoption of targets for composting. LCA proved to be effective for the evaluation of the environmental performance of MSWMS-Piedade. However, for future evaluations, the attributional approach should be replaced by the methodological practice of substitution to enable the avoided burdens to be considered in estimations of the environmental performance municipal solid waste management systems.
Resumo:
Perturbation of natural ecosystems, namely by increasing freshwater use and its degradative use, as well as topsoil erosion by water of land-use production systems, have been emerging as topics of high environmental concern. Freshwater use has become a focus of attention in the last few years for all stakeholders involved in the production of goods, mainly agro-industrial and forest-based products, which are freshwater-intensive consumers, requiring large inputs of green and blue water. This thesis presents a global review on the available Water Footprint Assessment and Life Cycle Assessment (LCA)-based methods for measuring and assessing the environmental relevance of freshwater resources use, based on a life cycle perspective. Using some of the available midpoint LCA-based methods, the freshwater use-related impacts of a Portuguese wine (white ‘vinho verde’) were assessed. However, the relevance of environmental green water has been neglected because of the absence of a comprehensive impact assessment method associated with green water flows. To overcome this constraint, this thesis helps to improve and enhance the LCA-based methods by providing a midpoint and spatially explicit Life Cycle Impact Assessment (LCIA) method for assessing impacts on terrestrial green water flow and addressing reductions in surface blue water production caused by reductions in surface runoff due to land-use production systems. The applicability of the proposed method is illustrated by a case study on Eucalyptus globulus conducted in Portugal, as the growth of short rotation forestry is largely dependent on local precipitation. Topsoil erosion by water has been characterised as one of the most upsetting problems for rivers. Because of this, this thesis also focuses on the ecosystem impacts caused by suspended solids (SS) from topsoil erosion that reach freshwater systems. A framework to conduct a spatially distributed SS delivery to freshwater streams and a fate and effect LCIA method to derive site-specific characterisation factors (CFs) for endpoint damage on aquatic ecosystem diversity, namely on algae, macrophyte, and macroinvertebrates organisms, were developed. The applicability of this framework, combined with the derived site-specific CFs, is shown by conducting a case study on E. globulus stands located in Portugal as an example of a land use based system. A spatially explicit LCA assessment was shown to be necessary, since the impacts associated with both green water flows and SS vary greatly as a function of spatial location.
Resumo:
In this Thesis, a life cycle analysis (LCA) of a biofuel cell designed by a team from the University of Bologna was done. The purpose of this study is to investigate the possible environmental impacts of the production and use of the cell and a possible optimization for an industrial scale-up. To do so, a first part of the paper was devoted to studying the present literature on biomass, and fuel cell treatments and then LCA studies on them. The experimental part presents the work done to create the Life Cycle Inventory and Life Cycle Impact Assessment. Several alternative scenarios were created to study process optimization. Reagents and energy supply were changed. To examine whether this technology can be competitive, a comparison was made with some biofuel cell use scenarios with traditional biomass treatment technologies. The result of this study is that this technology is promising from an environmental point of view in case it is possible to recover nutrients in output, without excessive energy consumption, and to minimize the use of energy used to prepare the solution.
Resumo:
A crescente preocupação que envolve as questões ambientais a nível mundial, cada vez mais agravadas pelo comportamento irresponsável do Homem, conduziu à criação de métodos de avaliação dos impactes ambientais provocados por produtos e sistemas. Sendo o sector da construção responsável por grande parte desses impactes, é evidente a necessidade de aplicação de medidas que visem mitigar ou, no mínimo, reduzir até valores aceitáveis, essas agressões ao meio ambiente. Nesse âmbito, é natural que tenha surgido a ideia de aplicar uma metodologia tão precisa e rigorosa como a LCA ao sector da construção. No entanto, nos dias de hoje, as preocupações alargaram-se às vertentes social e económica que, juntamente com a vertente ambiental, formam o triângulo de equilíbrio do desenvolvimento sustentável. É precisamente essa avaliação tripartida que esta Dissertação pretende abordar, tentando aprofundar conhecimentos e fornecer alternativas, através da análise crítica, que possam contribuir para a melhoria contínua desta metodologia.